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ABSTRACT 

 

As System-on-Chip (SoCs) in nanometer CMOS technologies grow larger, the power 

management process within these SoCs becomes very challenging. In the heart of this 

process lies the challenge of implementing energy-efficient and cost-effective DC-DC power 

converters. To address this challenge, this thesis studies in details three different aspects of 

DC-DC power converters and proposes potential solutions. First, to maximize power 

conversion efficiency, loss mechanisms must be studied and quantified. For that purpose, we 

provide comprehensive analysis and modeling of the various switching and conduction losses 

in low-power synchronous DC-DC buck converters in both Continuous Conduction Mode 

(CCM) and Discontinuous Conduction Mode (DCM) operation, including the case with non-

rail gate control of the power switches. Second, a DC-DC buck converter design with only 

on-chip passives is proposed and implemented in 65-nm CMOS technology. The converter 

switches at 588 MHz and uses a 20-nH and 300-pF on-chip inductor and capacitor 

respectively, and provides up to 30-mA of load at an output voltage in the range of 0.8–1.2 

V. The proposed design features over 10% improvement in power conversion efficiency over 

a corresponding linear regulator while preserving low-cost implementation. Finally, a 40-mA 

buck converter design operating in the inherently-stable DCM mode for the entire load range 

is presented. It employs a Pulse Frequency Modulation (PFM) scheme using a Hysteretic-

Assisted Adaptive Minimum On-Time (HA-AMOT) controller to automatically adapt to a 

wide range of operating scenarios while minimizing inductor peak current. As a result, 

compact silicon area, low quiescent current, high efficiency, and robust performance across all 

conditions can be achieved without any calibration.  
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CHAPTER I. INTRODUCTION 

 

The wide use of portable communication, navigation, and multi-media devices has 

fueled the demand for increasing the functional capabilities of these devices while reducing 

their power consumption and implementation size and cost. To meet this demand, the 

concept of mixed-signal System-on-Chip (SoC) has been introduced, where numerous 

analog, RF, and digital processing circuitries are implemented together in a single CMOS 

chip [1, 2]. The SoC concept, along with the dramatic scaling of the feature size of CMOS 

technologies to the nanometer levels, have been certainly transformational in terms of 

expanding the functional capabilities of mobile devices and reducing their power, size, and 

cost. Nonetheless, several complex challenges in terms of how power can be delivered to the 

SoC have been introduced as a byproduct of the SoC concept itself as well as the nature of 

nanometer CMOS technologies. Firstly, the SoC concept entails that the SoC contains an 

extensive mix of various circuit functions (analog, RF, and digital), with each function 

requiring its own independent and isolated power supply domain with unique specifications. 

Even within a specific circuit function, several independent power supply domains may be 

required. For instance, a data converter function may require a power supply domain for its 

analog part and another one for its digital part. As a result, the number of independent power 

supply domains in SoCs has grown significantly, and can easily exceed 30 in larger SoCs [2]. 

Implementing such a large number of power supply domains is very challenging in terms of 

cost and size. This is due to the fact that traditional power supplies require energy-storing 

passive components (i.e. inductors and capacitors) that are too large to integrate on chip, and 

therefore must be off chip. In addition to the fact that these off-chip passive components are 
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relatively expensive, they also consume significant real state area on the Printed Circuit 

Board (PCB), which further increases the cost and size of the system. Moreover, for the SoC 

to utilize these off-chip passive components, additional package pins become necessary, 

which is difficult to accommodate in pin-limited SoCs without adopting larger and more 

expensive packaging options. Secondly, as CMOS technology scales down to nanometer 

levels, the voltage rating of its devices, as well as the power supply levels required by the 

various circuit functions within the SoC, scale down to 1.8V or lower. Utilizing these devices 

to implement power supplies that operate from a Li-Ion battery with voltage levels as high as 

5V while ensuring the reliability of these devices becomes challenging, and often times 

comes at the expense of complicated design and large silicon area [3], or additional mask 

cost for implementing special high-voltage devices [4, 5]. 

In this chapter, we will first introduce the basics of power conversion schemes, 

focusing on the step-down converting solutions. The introduction includes the definitions and 

basic components that are widely implemented across may applications. After that, the 

different methods that can be employed to generate a large number of power supply domains 

from a single shared battery in mixed-signal SoCs are discussed, along with the advantages 

and limitations of each method in terms of efficiency, dynamic operation, and cost. This 

includes two-step approaches that involve a separate Power Management Integrated Circuit 

(PMIC) for primary power conversion, followed by secondary power converters within the 

SoC itself to generate multiple on-chip power supply domains. These secondary power 

converters can be linear regulators, or alternatively, can be fully-integrated high-frequency 

switched-C and switched-L regulators with on-chip passive components in order to improve 

power conversion efficiency. Single-step approaches will also be discussed, which includes 
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Single-Inductor-Multiple-Output (SIMO) power conversion schemes. This chapter will also 

give an overview of some proposed techniques that can be used to reduce the silicon area 

overhead of on-chip power supplies, along with techniques to improve the power conversion 

efficiency as well as dynamic and noise performance. Finally, the organization of the thesis 

will be discussed. 

 

 

1.1  Basics on Power Conversion Schemes 

 

As it is discussed previously, nanometer CMOS mixed-signal SoCs requires a large 

number of independent and well-isolated power domains with only limited input power 

sources. Most likely, the power source will be a single battery with higher voltage than the 

desired voltage level for the system(e.g. coin cell battery or Li-Ion battery). Thus, step-down 

power converters are widely implemented in order to generate these power domains from a 

single power source. In general, there are two categories of broadly used DC-DC step-down 

converters: (a) linear regulators; (b) switching regulators. 

Fig. 1.1 shows the schematic of a generic linear regulator with a P type 

MOSFET(𝑀𝑃1 ) as the power transistor. By adjusting the resistive divider 𝑅1  and 𝑅2 , the 

regulator is able to maintain a constant output voltage as: 

 
𝑉𝑂 = 𝑉𝑅𝐸𝐹 ×

𝑅1+𝑅2

𝑅2
  

(1.1) 
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where 𝑉𝑅𝐸𝐹 typically comes from the band-gap. Depending on the application and the type of 

the load, the output capacitor 𝐶𝐿 can be implemented either on PCB or integrated on die[6, 

7]. The way this circuit works is that the feedback loop constantly modulating the resistance 

of the power transistor 𝑀𝑃1  so as to create a resistive ladder between 𝑀𝑃1  and the load, 

creating the regulated output voltage 𝑉𝑂 while dumping current that is consumed by the load. 

In general, the feedback loop architecture may vary while the power transistor may also be 

implemented as a N type MOSFET depending on the application and the compensation 

techniques[8].  The advantage of this type of regulator is simple to implement, robust and 

low cost. 

One major disadvantage of the linear regulator is that the power conversion efficiency 

degrades with respect to the ratio between the input and the output of the regulator since all 

the current delivering to the load also flows through 𝑀𝑃1 . Thus, the power conversion 

efficiency of the linear regulator can be approximately derived as: 

 
𝜂 =

𝑃𝑂

𝑃𝐼𝑁
=

𝑉𝑂 × 𝐼𝑂

𝑉𝐼𝑁 × 𝐼𝐼𝑁
 

(1.2) 

While 𝑃𝑂  and 𝑃𝐼𝑁  are denoted as output and input power, respectively. Note that the input 

power calculation ignores the power consumed by amplifier 𝐴1  assuming it is relatively 

small(e.g. tens of µA). Based on eq. (1.2), the power conversion efficiency with input voltage 

as 3.3 V and output voltage as 1.2 V can only be approximately 36%, which is considered as 

fairly inefficient.  DC-DC switching regulators, on the other hand, are famous for their high 

power conversion efficiency over a wide range of input and output conditions. This has been 

realized by transferring energy between energy-storage elements(e.g. inductor and capacitor) 

based on certain patterns(e.g. turn on and off switches)[9-10]. By doing this, the energy is 
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saved since the power switches do not have to constantly burning all the redundant power 

any more comparing to the linear regulator since the energy can be stored on those energy-

storage components. Among all types of DC-DC step-down switching regulators, the 

inductor based, DC-DC buck regulator is the best in class in terms of the power conversion 

 

 

efficiency. Based on the report from the literatures, those kind of switching regulator can 

achieve 95% efficiency and above[11]. 

Figure 1.1. Schematic of a typical linear regulator with P type MOSFET as 

power transistor 

VREF

A1

VIN

VO

L
o

adCL

MP1

R1

R2
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The block diagram of a typical DC-DC buck regulator is shown in Fig. 1.2. This type 

of regulator is typically composed with an off-chip inductor and an off-chip capacitor at 1-

100 µH and µF level. The high-side power transistor 𝑀𝑃1  and low-side power transistor 

𝑀𝑁1and their corresponding gate driver are the major contributor to the total silicon area. 

This will help reduce the conductional loss due to charging and discharging the inductor in 

order to achieve high power conversion efficiency. The control and compensation block is 

typically composed of amplifiers, comparators, ramp generators and digital logic circuits, etc. 

The functionality of this block is to properly control the on/off of the high-side power 

transistor 𝑀𝑃1  and low-side power transistor 𝑀𝑁1  so that a desired output level can be 

generated and maintained. Note that the output level is a DC voltage with AC component on 

top of it. This AC component is called “ripple” and typically stays in the range of a few mV 

to tens of mV.  

Typically, the “on” time of the high-side power transistor 𝑀𝑃1 is defined as 𝑇𝑜𝑛 while 

the “on” time of the low-side power transistor 𝑀𝑁1 is defined as 𝑇𝑜𝑓𝑓 . To control the buck 

regulator,  one famous control topology, Pulse-Width-Modulation(PWM) control is to keep 

the sum of 𝑇𝑜𝑛 and 𝑇𝑜𝑓𝑓  unchanged(e.g. fixed switching frequency) while modulating the 

ratio between 𝑇𝑜𝑛 and 𝑇𝑜𝑓𝑓  to achieve the desired output voltage level. On the other hand, 

one can also keep 𝑇𝑜𝑛  or 𝑇𝑜𝑓𝑓  unchanged and modulating the operating frequency of the 

regulator to achieve the same goal. This type of control topology is referred as Pulse-

Frequency-Modulation(PFM) control. No matter which control topology is used, as long as 

the regulator stays in Continuous-Conduction-Mode(CCM) condition, the relationship 

between the input and output can be derived as[12]: 
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𝑉𝑂 = 𝑉𝐼𝑁 ×

𝑇𝑜𝑛

𝑇𝑜𝑛 + 𝑇𝑜𝑓𝑓

 
(1.3) 

 

By analyzing the above equation, one can easily come to the conclusion that, in theory, the 

regulator can generate the same output voltage with different switching frequency as long as 

the ratio between the high-side power transistor “on” time and total period is the same. 

However, this does not mean that designer can pick whatever switching frequency they want 

in the actual design. In general, the operating frequency of the regulator is inversely 

proportional to the ripple at the output. On the other hand, the power loss due to turning 

on/off the power transistors is proportional to the operating frequency. Thus, designers need 

to carefully budget all the design parameters so as to achieve the best performance of the 

regulator based on the specific application.   

      

 

Figure 1.2. A block diagram of a typical DC-DC buck regulator topology 
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The efficiency analysis for a buck regulator is slightly different than the linear 

regulator since the loss mechanism of a buck regulator is more complex. In general, there are 

two types of losses in a buck regulator: a) conductional losses; b) switching losses. 

Conductional losses are due to the finite resistance of the power transistor 𝑀𝑃1  and 𝑀𝑁1 

while the switching losses are due to the energy it takes to charge and discharge the parasitic 

capacitance of the power transistor(e.g. gate to source capacitance). Thus, the efficiency of a 

buck regulator can be derived as: 

 
𝜂 =

𝑃𝑂

𝑃𝐼𝑁

=
𝑃𝑂

𝑃𝑂 + 𝑃𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑑 + 𝑃𝑙𝑜𝑠𝑠_𝑠𝑤

   
(1.4) 

 

Where 𝑃𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑑  and 𝑃𝑙𝑜𝑠𝑠_𝑠𝑤  represent the conductional losses and switching losses, 

respectively. In general, for a given input and output condition, 𝑃𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑑 is proportional to 

the product of the load and the “on” resistance of the power transistor while 𝑃𝑙𝑜𝑠𝑠_𝑠𝑤 is 

proportional to the product of the equivalent gate capacitance of the power transistor and the 

switching frequency. Moreover, the “on” resistance of the power transistor is inversely 

proportional to the total gate capacitance of the power transistor since a “larger” MOSFET 

typically contains more parasitic capacitance. Thus, for a given load and switching 

frequency, it is possible to arrive at an optimized size of the power transistor after some 

iteration.  

Typically, the PWM control topology is widely used for the load range around 

hundreds of mA as it can achieve a relatively flat and optimum efficiency curve over a wide 

range of load variation[13]. However, once it comes to light load conditions(e.g. less than 

10mA), the switching losses will dominate the conduction losses, causing a massive 
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efficiency degradation. In this case, the PFM control is preferred since the switching 

frequency can be adjusted depending on the load conditions so that the switching losses and 

conduction losses can be balanced. Thus, the classic DC-DC buck regulator typically 

contains both PWM and PFM modes so as to achieve high efficiency curve over a wide load 

range(e.g. 10mA to 1A)[14].  

 

1.2  Two-step Power Conversion Schemes 

 

Conceptually, all the power supply domains needed by the SoC can be implemented 

externally with high power conversion efficiency using a separate Power Management 

Integrated Circuit (PMIC) and then delivered to the SoC. However, as the number of power 

supply domains increases, this solution becomes unrealistic from a cost and size perspective, 

not only due to the passive components involved, but also due to the large count of package 

pins that would be required in the PMIC and the SoC to connect these power supply lines. 

Moreover, since the SoC may require many of these power supplies to be adaptive (i.e. their 

voltage levels may need to be varied with time to optimize the load performance), some form 

of communication between the SoC and the PMIC is necessary, which adds to the 

complexity of the system design and limits the speed at which these power supplies can be 

adapted by the SoC. Moreover, due to the package and PCB parasitics associated with 

routing these power supply lines, the overall efficiency and the dynamic performance of the 

power supplies can be significantly degraded. For the above reasons, the two-step approach 

shown in Fig. 1.3 has become the most attractive and commonly-employed power conversion 

scheme in SoCs today. As shown, a separate PMIC is still used, but only for generating a 



www.manaraa.com

10 

 

 

limited number of primary power supply domains directly from the battery, typically one for 

analog functions and another for digital functions [1, 2]. These shared power supplies are 

usually implemented using switching power regulators, and thus offer high power conversion 

efficiency. Subsequently, these primary power supplies are used to generate a large number 

of independent secondary power supplies within the SoC itself using arrays of on-chip power 

regulators. This two-step approach has the advantage of limiting the number of external 

power supplies that must be routed to the SoC, which saves a significant count of package 

pins. Furthermore, the separate PMIC can be implemented in a suitable CMOS technology 

that can interface with the high-voltage battery without reliability concerns. Moreover, since 

the primary power supplies routed to the SoC have much lower voltage levels, implementing 

the secondary on-chip power supplies within the SoC using nanometer CMOS technology is 

greatly simplified in terms of reliability. Additionally, with the secondary power supplies 

integrated within the SoC, adapting them dynamically to the specific demand of their loads 

can be done without the complexity of communicating with the PMIC. Finally, the off-chip 

passive components count is greatly reduced as they are needed for only few primary power 

supplies, which reduces the size and cost of the whole system. The on-chip secondary power 

supplies can be implemented in several ways as detailed below. 
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1.2.1 Fully-Integrated Linear Regulators 

Linear regulators are very popular due to their relatively compact size and small 

passive components count (usually a single capacitor), which help reducing their 

implementation cost. Moreover, they offer low noise performance due to lack of inherent 

Figure 1.3. Two-Step power conversion scheme for SoCs based on a separate 

PMIC and arrays of on-chip power converters within the SoC itself. 
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switching, as well as their ability to suppress noise from the primary power supplies. 

Although conventional linear regulators require output capacitors that are too large to 

integrate on chip, numerous new topologies, example of which is shown in Fig. 1.4, have 

been proposed that enable their implementation using only hundreds of Pico-Farads 

capacitors [15-20]. These topologies have made linear regulators very popular in SoCs since 

fully-integrated realizations became possible with only on-chip capacitors. Moreover, many 

of these topologies offer wide-band performance when implemented in nanometer CMOS, 

which allows for faster dynamic operation. However, linear regulators suffer from poor 

power conversion efficiency and can significantly affect the overall efficiency of the system 

if widely used across the SoC. Moreover, fully-integrated topologies with on-chip capacitors 

suffer from poor Power Supply Rejection (PSR) around the typical frequencies used in the 

primary switching power supplies [21]. This limits their ability to reject the switching noise 

present at the primary power lines and may require employing complicated control 

techniques in the primary power supplies to reduce their switching noise [21-23]. 
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1.2.2 Fully-Integrated Switching Regulators 

To circumvent the efficiency degradation caused by employing linear regulators as 

secondary power supplies within SoCs, they can be replaced by fully-integrated capacitor-

Figure 1.4. Examples of on-chip power regulator topologies: Linear topology 
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based [2, 24-27] or inductor-based [28-31] switching regulators, examples of which are shown 

in Fig. 1.5 and 1.6. Traditionally, these regulators require large off-chip passive components 

due to their low switching frequency, which can’t be increased to avoid excessive switching 

losses and degraded efficiency. However, with the scaling of CMOS technologies to 

nanometer levels, these regulators can be implemented with much higher switching 

frequencies while maintaining reasonable switching losses and better overall efficiency than 

linear regulators [1]. Consequently, the passive components required can be scaled down to 

levels where they can be implemented on-chip [2, 24-31], and much faster dynamic 

performance can be achieved. 

One major limitation of fully-integrated realizations of switching regulators, however, 

is their large silicon area compared to linear regulators, primarily due to the area overhead of 

the on-chip passives. In fact, the area of some of these realizations can consume between 

twice to ten times the area of a corresponding linear regulator. In inductor-based realizations, 

this problem is exacerbated by the fact that the area underneath on-chip inductors 

(implemented using top thick metal layers) is left unused to avoid additional losses through 

electromagnetic coupling with any circuits or routing underneath the inductor. This forces 

implementing the rest of the regulator’s circuitry (including the output capacitor) outside the 

inductor area, leading to much larger silicon area. To reduce the overall area, there have been 

recent proposals to stuff circuits underneath on-chip inductors, particularly in step-down 

regulators [30]. These implementations rely on the fact that the switching frequency, though 

high, but not as high as RF applications where electromagnetic coupling losses are a real 

concern. Moreover, since in step-down regulators the output capacitor is shorted to one side 

of the inductor anyway, it may be feasible to at least stuff that capacitor underneath the 
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inductor. These realizations can significantly reduce the total area of the regulator to bring it 

closer to the area of a corresponding linear regulator. In capacitor-based realizations, there is 

little that can be done, other than increasing the switching frequency, to reduce the total area 

because the on-chip capacitors use the poly-well layers, which renders their area unusable for 

anything else. 

Another major limitation of fully-integrated realizations of switching regulators is the 

quality factor of the on-chip passive components, which significantly degrades the overall 

power conversion efficiency. In inductor-based realizations, the series resistance of the on-

chip inductor dominates the losses and limits the overall efficiency to about 10% better than 

linear regulators in best case scenarios [30]. This can be circumvented in some cases by using 

multi-phase designs to reduce conduction losses in the inductor and use non-standard CMOS 

technologies that offer additional thick metal layers for implementing higher quality 

inductors [29, 31]. However, these technologies are more expensive than standard CMOS 

and are difficult to justify in commercial applications that do not contain RF functions. There 

have also been proposals to employ on-package air-inductors [32] or bond-wire inductors [33] 

that feature better quality than on-chip counterparts. However, this requires special 

packaging consideration, and thus cost, pin count, and integration continues to be a challenge. 

On the other hand, the bottom plate parasitics of on-chip capacitors limit the overall 

efficiency of capacitor-based realizations of fully-integrated switching regulators [2]. 

Nevertheless, recently reported implementations are showing a great promise for achieving 

higher levels of efficiency than inductor-based counterparts [24]. 
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1.3 One-step Power Conversion Schemes 

 

A major limitation of the two-step power conversion approach discussed in the 

previous section is the degraded efficiency resulting from cascading power converters. For 

instance, cascading two power converters, each with 80% efficiency, results in an overall 

efficiency of only 64%. For that reason, single-step switching power conversion schemes that 

Figure 1.6. Examples of on-chip power regulator topologies: Inductor-based topology [30]. 
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operate directly from the battery and implemented within the SoC are becoming increasingly 

popular. In addition to the efficiency advantage of this strategy, it also eliminates the need for 

a separate PMIC. To avoid the large count of passive components, particularly inductors, 

SIMO topologies such as the one shown in Fig. 1.7 have been used to implement a large 

number of efficient power supplies for SoCs in nanometer CMOS technologies [34]. 

However, due to the high-voltage rating of Li-Ion batteries, special high-voltage transistors 

must be available in the technology flow to interface with the battery. This constitutes an 

additional cost beyond standard nanometer CMOS technology nodes. Moreover, although 

traditional SIMO topologies limit the number of inductors to only one, each power supply 

continues to require a large off-chip capacitor. This entails the same issues associated with 

the cost and size of these capacitors as well as the package pins count to interface with them 

as described in the previous section. Therefore, these topologies still create a tradeoff 

between cost and efficiency. Furthermore, since traditional SIMO topologies use low 

switching frequencies to achieve high efficiency, and since they must distribute the energy of 

a single inductor to many outputs in a sequential manner, their transient performance is 

typically slow, which limits the ability to dynamically adapt them as the SoC demands. The 

above limitations are spurring new research that attempts to reduce the output capacitors in 

single-step SIMO topologies to levels where they can be integrated on chip while preserving 

their efficiency advantage. This includes dual-frequency SIMO topologies that feature fully-

integrated outputs and offer very fast dynamic operation [35]. These topologies can enable 

the implementation of a large number of highly-efficient power supplies within the SoC 

without the overhead of off-chip capacitors. 
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1.4 Thesis Organization 

 

The thesis is organized as follow: 

Chapter 2 focuses on the theory of loss analysis of buck converter for low power 

nanometer CMOS applications. This chapter provides comprehensive analysis and modeling 

of switching and conduction losses in low-power synchronous buck regulators in both CCM 

and DCM modes of operation including the case with non-rail gate control of the power 

Figure 1.7. A block diagram of a typical SIMO power converter topology 
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FETs. The analysis takes into account losses that are typically ignored but become critical in 

low-power operation. It also considers the actual behavior of the regulator in DCM for loss 

modeling instead of common CCM-based approximations, which leads to more accurate 

estimation of losses. The provided comprehensive loss formulas can be used by designers to 

correctly optimize critical parameters in low-power buck regulators, such as the switching 

frequencies, sizes of the power FETs, realistic budgets for the parasitics associated with the 

passive components as well as the package so as to achieve the best possible efficiency. The 

theoretical formulas are verified against an actual buck regulator design implemented in 

90nm CMOS technology. 

Chapter 3 discusses a fully-integrated buck regulator with on-chip passives in 65nm 

standard CMOS technology is presented [36]. The proposed regulator switches at 588MHz 

and uses a 20nH on-chip inductor and a 300pF on-chip output capacitor. It operates from 

1.8V input and produces an output in the range between 0.8V to 1.2V with maximum load 

current of 30mA. In order to reduce the large silicon area overhead of the on-chip inductor, 

the proposed design employs circuit stuffing where the entire regulator’s circuitry is 

implemented directly underneath the inductor. This includes the input and output 

capacitance, power train, and control circuits. Thus, the total area of the regulator becomes 

essentially the area of the on-chip inductor itself, which cuts the regulator’s footprint by 50%. 

Moreover, the proposed regulator employs a self-regulation loop that improves its overall 

efficiency and ensures the reliability of its low-voltage power transistors while operating 

from a 1.8V input. The regulator occupies 0.12mm
2
 with a peak efficiency of 60%, and 

achieves up to 13.7% better efficiency than a corresponding LDO. It achieves fast settling 
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time of 240ns for a 200mV output voltage step, and as short as 40ns for a 20mA load current 

step. 

Chapter 4 presents a 40mA buck regulator operating in the inherently stable 

Discontinuous Conduction Mode (DCM) for the entire load range is presented [37]. A Pulse 

Frequency Modulation (PFM) control scheme is implemented using a proposed Hysteretic-

Assisted Adaptive Minimum On-Time (HA-AMOT) controller to automatically adapt the 

regulator to a wide range of operating scenarios in terms of input, output, and passive 

component values while ensuring compensation-less DCM operation with minimized inductor 

peak current. Thus, compact silicon area, low quiescent current, high efficiency, and robust 

performance across all possible scenarios can be achieved without any calibration. Moreover, 

power-gating is employed in the analog circuits of the proposed controller to further improve 

efficiency at sub-1mA loads. The regulator is integrated within a low-power microcontroller 

in 90nm CMOS to power its digital core while allowing maximum flexibility in the powering 

options of the microcontroller and the choice of the passive components. It occupies 0.1mm
2
 

and achieves 92% peak efficiency, and 78.5% and 86% efficiency at 200µA and 40mA loads 

respectively. It handles an input in the range of 1.8V-4.2V, an output in the range of 0.9V-

1.4V, an inductor in the range of 4.7µH-10µH, and an output capacitor in the range of 2.2µF-

10µF without any calibration or re-optimization. The whole thesis concludes in chapter 5 

while some new ideas regarding fully integrated DC-DC buck converters are proposed. 
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CHAPTER II. ANALYSIS AND MODELING OF LOSSES IN LOW-POWER BUCK 

REGULATORS  

 

Buck regulators are becoming very popular in low-power System-on-Chip (SoCs), 

such as microcontrollers, due to their high power conversion efficiency compared to linear 

counterparts [1]. In these types of SoCs, the maximum load current of the buck regulator is 

typically less than 50mA, with an output voltage between 0.9V and 1.4V [2]. With such low 

output power and voltage levels, achieving high efficiency requires careful estimation of the 

various forms of losses in order to determine the power FET device type and size, the 

switching frequency, the acceptable accuracy of the passive components, and the routing and 

package parasitics that can be tolerated. Although several classic loss formulas are readily 

available in the literature for that purpose [3-5], they are either oversimplified or geared 

towards high-power high-voltage designs. Thus, they often ignore factors that can be critical 

in low-power low-voltage designs. For instance, it is common to ignore losses such as 

transitional losses in the power FETs and dead-time (non-overlap time) body-diode losses. 

Moreover, since low-power SoCs are usually implemented in low-voltage nanometer CMOS, 

the buck regulator is typically operated from input voltages that may exceed the gate-to-

source voltage rating of its power FETs, and thus, non-rail gate switching using intermediate 

voltage levels must be employed to preserve device reliability [6], which renders the classic 

loss formulas inaccurate since they assume rail-to-rail gate switching. Furthermore, with 

maximum load current of less than 50mA, the regulator operates in DCM most of the time 

[2], and therefore, using the common CCM-based loss formulas becomes overly pessimistic, 

and alternative formulas that consider actual DCM operation become necessary for accurate 

estimation of losses [8]. Additionally, it is also common to simplify gate-drive losses of the 
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power FETs assuming a lumped gate capacitance without differentiating between Cgs (gate-

to-source capacitance) and Cgd  (gate-to-drain capacitance), and ignoring how 

charging/discharging these parasitic capacitors may change other forms of losses such as 

transitional and conduction losses in the power FETs. While all the above simplifications and 

omissions can be appropriate for optimizing high-power high-voltage designs, they can lead 

to significantly sub-optimal design in low-power applications. 

In this chapter, the critical components of switching and conduction losses are studied 

taking the aforementioned factors into consideration. The loss formulas are derived for the 

CCM and DCM cases separately assuming non-rail gate switching for the sake of generality, 

but can also be reduced to cover rail-to-rail gate drive as a special case. The formulas can be 

used for optimizing buck regulators for the best efficiency and aid with determining the 

dominant loss mechanisms that must be reduced. The paper is organized as follows: chapter 

2.1 and 2.2 study the different switching and conduction loss mechanisms and derive the loss 

formulas in both CCM and DCM, while chapter 2.3 compares the losses estimated by these 

formulas to the simulated losses in a buck regulator design in 90nm CMOS. Chapter 2.4 

concludes this part of the thesis. 

In order to analyze the different losses, the block diagram of a typical buck regulator 

operating with a switching period Ts, input and output voltages VIN and VO  respectively is 

shown in Fig. 2.1(a), including all the parasitics critical for losses. The parasitics include the 

routing and package pin resistances associated with the low-side and high-side power FETs, 

which are denoted as Rpls and Rphs  respectively; the routing and package pin resistances 

associated with the switching node, which is denoted as Rpsw; and the parasitic resistance 

associated with the off-chip inductor and capacitor, which are denoted as Rind  and Resr 
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respectively. The figure also shows the gate-to-source and gate-to-drain capacitances 

associated with the power FETs, the body-diode associated with the low-side power FET, as 

well as the total parasitic capacitance associated with the switching node. The special 

symbols used for the power FETs are to emphasize the case where drain-extended power 

FETs in nanometer CMOS technologies are used to handle high voltage levels across their 

drain-source terminals (for instance, 1.8V), while their gate-source voltage levels must 

continue to be restricted by the low-voltage rating of the FETs (for instance, 1.2V). Fig. 2.1(b) 

and 2.1(c) show the important voltage and current waveforms in the regulator in CCM and 

DCM modes respectively. The waveforms emphasize the non-rail gate control levels of the 

power FETs by showing the swing of the gate control signal VCP  of the high-side FET 

between VCP−min and VIN, while showing the swing of the gate control signal VCN of the low-

side FET between zero and VCN−max. The waveforms also show the turn-on voltage VD of the 

body-diode of the low-side power FET. This diode is turned on by the inductor current 

during the intentionally-inserted dead-time period Td at which both the high-side and low-

side FETs are kept in an off state to avoid any shoot-through current during transitions. The 

rise and fall times of all the gate control signals are assumed to be the same and are denoted 

as Ttran , while Ton  and Toff  denote the on-time of the high-side and low-side FETs 

respectively. It is worth noting that both Ttran and Td are typically much smaller than Ton and 

Toff. In the DCM scenario in Fig. 2.1(c), the additional period of time at which the inductor 

current is zero and the low-side FET is turned off is denoted as Tidle. To distinguish between  
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the various switching events during the operation of the regulator, these events are denoted in 

Fig. 2.1(b) and Fig. 2.1(c) as events (A), (B), (C), and (D) for easy reference. Fig. 2.1 will be 

used frequently throughout the paper while analyzing the various switching and conduction 

losses. 
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Figure 2.1. (a) A typical buck converter including critical parasitics, and important 

waveforms in (b) CCM operation, and (c) DCM operation. 
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2.1 Switching Losses Analysis 

 

2.1.1 Transitional Losses 

The first source of switching losses that will be considered is the transitional loss 

across the power FETs as they transition from a fully on state to a fully off state and vice 

versa. This loss happens due to the finite rise/fall time of the gate control signals of the FETs 

and occurs regardless of any switching node capacitance, i.e. it is not associated with 

charging and discharging the switching node capacitance Csw. As shown in Fig. 2.1(a) in the 

CCM case and Fig. 2.1(b) in the DCM case, the transitional losses for the high-side power 

FET occur during events (A) and (B), while transitional losses for the low-side power FET 

occur during events (C) and (D). Fig. 2.2 shows a detailed plot of the control signal at the 

gate of each power FET along with the voltage across the FET and the current flowing 

through it during each one of the switching events noted in Fig. 2.1. However, for detailed 

analysis of transitions, each switching event in Fig. 2.1 is further sub-divided in Fig. 2.2 in 

order to distinguish between different segments within each transition. It is worth observing 

that since both Ttran and Td are normally very short compared to the rate of change in the 

inductor current, it can be safely assumed that during both events (B) and (D) in Fig. 1 the 

inductor current stays constant at its peak value Imax, while during both events (A) and (C) 

the inductor current stays constant at its trough value Imin. Note that while Fig. 2.2 describes 

the CCM case, it can be used for the DCM case by simply assuming that Imin  is zero. 

Starting with the high-side power FET in CCM, Fig. 2.2(a) shows the details of the transition 

from a fully-off state to a fully-on state (event (A) in Fig. 1(b)). In the first segment of the 

transition between (A1) and (A2), the gate control signal starts to drop while the FET 
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continues to be in an off state (the full inductor current continues to flow through the body-

diode of the low-side power FET). The total voltage across the drain-source of the high-side 

FET is maintained at VIN + VD  with no current flow, and thus, no significant transitional 

losses are incurred across it. In the second segment of the transition between (A2) and (A3), 

the high-side FET starts to turn on and gradual exchange of current between the body-diode 

of the low-side FET and the high-side FET starts to take place. The current flow in the high-

side FET can be approximated as a linear transition from zero to Imin, while the voltage 

across its drain-source continues to be VIN + VD  (since the diode is still conducting). 

Therefore, transitional losses will be incurred across the high-side FET during this segment 

and can be computed by integrating the product of the constant voltage across the FET and 

its approximately linear current waveform. In the third segment of the transition between 

(A3) and (A4), the high-side FET would be bearing the full inductor current Imin, and the 

body-diode of the low-side FET would be turned off. The drain-source voltage of the high-

side FET starts to rapidly drop from VIN + VD to almost zero (due to the low on-resistance of 

the high-side FET), and can be approximated as a linear transition. Thus, transitional losses 

will be incurred across the high-side FET during this segment and can be computed by 

integrating the product of the constant current through the FET and its approximately linear 

drain-source voltage waveform. In the fourth segment of the transition between (A4) and 

(A5), the high-side FET would be bearing the full inductor current with very small voltage 

across its drain-source. Losses across the FET in this segment are accounted for in the 

conduction losses in section III and are not considered part of the transitional losses. 

Taking the above discussion into consideration, the total transitional losses in the 

high-side FET during event (A) take place between (A2) and (A4), and can written as: 
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Ptran_HS_A =

λp × (VIN + VD) × Imin × Ttran

2 × Ts
                      

(2.1) 

 

where λp  is the ratio between the period from (A2) to (A4) and the total gate control 

transition period Ttran. Therefore the value of λp can be between 0 and 1. The actual value of 

λp is inversely proportional to the Rdson of the high-side FET, which is in turn determined by 

the FET size, the gate-to-source voltage of the FET when it is turned on, the process corner, 

and temperature. It is rather easy to determine λp through simulations for an existing design. 

However, since the purpose of the formulas derived in this paper is to aid with initial design 

decisions, λp may not be known in advance. The authors have found that setting λp initially 

to 0.5 is a good starting point for initial estimation of losses, and it can then be tweaked once 

an initial design is in place to yield more accurate estimation. 

The previous analysis applies equally to event (B) shown in Fig. 2.2(b) as the high-

side FET transitions from a fully-on to fully-off state, except that the current level is at Imax. 

Therefore, the transitional loss in event (B) can be written as: 

 

 
Ptran_HS_B =

λp × (VIN + VD) × Imax × Ttran

2 × Ts
  

(2.2) 

 

Combining the transitional losses from events (A) and (B), and taking into account the 

relationship between Imin, Imax, and the load current IL, the total transitional losses across the 

high-side FET during CCM operation can be written as: 
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Ptran_HS_CCM =

λp × (VIN + VD) × IL × Ttran

Ts
  

(2.3) 

 

For low-side FET, the turning on transitional profile during event (D) for CCM is 

shown in Fig. 2.2(c). The whole event starts from (D1) and ends at (D5). Since the voltage 

level of the switching node stays at −VD at the very beginning of (D1), once the gate voltage 

of the FET (VCN) reaches VT − VD at (D2), the FET turns on and it starts to take over the 

inductor current while the voltage across the FET stays at VD. The loss can be computed by 

assuming a linear transition in the FET’s current in this phase. Starting from event (D3), the 

FET turns into linear region and the voltage across the FET drops to zero until event (D4). 

During this phase, the loss can be computed by assuming a linear transition in switching node 

voltage. Therefore, the transitional loss due to turning on NMOS power FET at event (D) can 

be derived as: 

 

 
Ptran_LS_D =

λn × VD × Imax × Ttran

2 × Ts
 

(2.4) 

 

where 0 < λn < 1  represent the ratio of the time between (D2) to (D4) over the whole event 

(D) duration. Again, the value of λn is proportional to the Rdson of the low-side FET. Note 

that for low threshold voltage technology, having a diode voltage across the gate and 

switching node is enough to convert the channel to weak or moderate inversion region. In 

this scenario, the NMOS channel and its body-diode will provide current simultaneously 

during the dead-time. Although the transition profile is different comparing to Fig. 2.2(c), a 

similar conclusion for transitional loss can be derived by applying the same analysis. 
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The turning off transition of low-side FET during event (C) can be referred to Fig. 

2.2(d). The same analysis can be applied to compute the loss during this event and the 

transitional loss equations are: 

 

 
Ptran_LS_C =

λn × VD × Imin × Ttran

2 × Ts

 
(2.5) 

 

Therefore, the total transitional loss for low-side power FET during CCM operation is:  

 

 
Ptran_LS_CCM =

λn × VD × IL × Ttran

Ts

  
(2.6) 

 

By adding equation (2.3) and (2.6), the total transitional loss for CCM operation can be 

derived as: 

 

 
Ptran_CCM = λ ×

(VIN + 2 × VD) × IL × Ttran

Ts

  
(2.7) 

 

Where λ  equals λn  and λp  due to the fact that high-side and low-side power FETs are 

typically sized as 2:1 ratio so that there on resistance (Rdson) will be equal to get the optimal 

efficiency.  

For DCM scenarios, the transitional losses only occur during events (B) and (D). The 

conclusion can be derived by adding equation(2.2) and (2.4) replacing Imax with ∆I. Thus, 

the total transitional loss for DCM operation is: 
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Ptran_DCM = λ ×

(VIN + 2 × VD) × ∆I × Ttran

2 × Ts
  

(2.8) 

 

Based on equation (2.7) and (2.8), the best way to reduce the transitional loss is to 

minimize Ttran . However, this will cause reliability and EMI issues for the switching 

regulator. Thus, Ttran is typically designed based on the trade-off between the efficiency and 

reliability requirement.   

2.1.2 Gate & Switching Node Capacitance Losses Estimation 

The second source of switching losses is the charging and discharging process of the gate and 

switching node capacitances of the power FETs. The traditional methodology to compute this 

kind of losses is based on the equation 
1

2
𝐶(𝑉𝑓 − 𝑉𝑖)

2
, where 𝑉𝑖  and 𝑉𝑓  are the initial and final 

voltages across the capacitor and 𝐶 is the actual capacitance value. However, this equation 

assumes the energy discharged on capacitor is 100% lost away and becomes invalid once 

multiple capacitors are interacting together with other types of losses. For example, the 

amount of energy discharged at the capacitors during turning on/off power FETs can be 

transferred to reduce the transitional losses. For this purpose, we will derive the formulas for 

all the losses during the switching event as a system. The total amount of loss 𝐸𝑙𝑜𝑠𝑠 = 

𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 − (𝐸𝑠𝑡𝑜𝑟𝑒𝑑−𝑓 − 𝐸𝑠𝑡𝑜𝑟𝑒𝑑−𝑖), where 𝐸𝑖𝑛  and 𝐸𝑜𝑢𝑡  represent the amount of energy 

injected/ejected in-to/out-of the system while (𝐸𝑠𝑡𝑜𝑟𝑒𝑑−𝑓 − 𝐸𝑠𝑡𝑜𝑟𝑒𝑑−𝑖) denotes the net change 

of energy stored in the system. Moreover, we assume the non-rail switching voltage     
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Figure 2.2. A plot of the control signal of each power FET along with the voltage 

and current across the FET’s drain-source terminals during the switching events 

noted in Fig. 1: (a) high-side FET in event (A), (b) high-side FET in event (B), 

(c) low-side FET in event (D), and (d) low-side FET in event (C). 
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𝑉𝑔𝑝  and 𝑉𝑔𝑛  are ideal power supplies so as to simplify the derivation. The detailed 

notifications can be referred to Fig. 2.4 and 2.5. The event by event charge flow plots for 

CCM scenarios are shown in Fig 2.4, where all the relevant capacitors per event are detailed 

as well as the current flow of the related capacitors during the event. And the equations for 

input, output and stored energy are listed at the right hand side of the each event plot. Note 

that 𝑡𝑖  and 𝑡𝑓  represents and initial and final time of the event and it is essentially the 

transitional time(𝑇𝑡𝑟𝑎𝑛) of the system. 

During event (A) where the high-side FET is turning on, the voltage level of the gate 

of the high-side FET is discharging to Vgp while the switching node is getting charged to Vin. 

By plug in the initial and final voltage level across the FETs’ capacitors in to the equations 

while understanding that ∫ (Vin − Vsw)Iinddt
tf

ti
 is the transitional loss calculated in the 

previous session. The total capacitive losses during event (A) can be derived as: 

𝑃𝑐𝑎𝑝𝑐𝑐𝑚
(𝐴) =

1

2
× 𝑓𝑠[𝐶𝑔𝑠𝑝 × ∆𝑉𝐶𝑃

2 + 𝐶𝑔𝑑𝑝 × (∆𝑉𝐶𝑃 + 𝑉𝑖𝑛 + 𝑉𝐵𝐷)2 + 𝐶𝑔𝑑𝑛 ×

(𝑉𝑖𝑛 + 𝑉𝐵𝐷)2 + 𝐶𝑠𝑤 × (𝑉𝑖𝑛 + 𝑉𝐵𝐷)2]                                                           

(2.9)    

During event (B) where the high-side FET is turning off, the voltage level of the gate 

of the high-side FET is charging to 𝑉𝑖𝑛 while the switching node is getting discharged to 

−𝑉𝐵𝐷 . Based on the energy flow graph denoted on Fig 2.4 (b) and the energy equations 

listed, the same approach can be taken. The total capacitive losses during event (B) can be 

derived as: 

𝑃𝑐𝑎𝑝_𝑐𝑐𝑚(𝐵) =
1

2
𝑓𝑠[𝐶𝑔𝑠𝑝 × ∆𝑉𝐶𝑃

2 − 𝐶𝑔𝑑𝑝 × [(𝑉𝑖𝑛 + 𝑉𝐵𝐷)2 − ∆𝑉𝐶𝑃
2 ] − 𝐶𝑔𝑑𝑛 ×
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(𝑉𝑖𝑛 + 𝑉𝐵𝐷)2 − 𝐶𝑠𝑤 × (𝑉𝑖𝑛 + 𝑉𝐵𝐷)2                                              (2.10) 

Note that the reason why switching loss are negative for 𝐶𝑔𝑑𝑝, 𝐶𝑔𝑑𝑛 and 𝐶𝑠𝑤 is due to the fact 

that the energy discharged at the switching node is not lost but used to compensate part of the 

switching loss and transitional loss. This is demonstrated in the Fig 2.4(b) with green color as 

if the discharged energy is feeding back to the supply.  

During event (C) where the low-side FET is turning off, the voltage level of the gate 

of the low-side FET is discharging to 0 while the switching node is getting discharged to 

−𝑉𝐵𝐷. The same practice can be done and the total capacitive losses during event (C) can be 

derived as: 

𝑃𝑐𝑎𝑝𝑐𝑐𝑚
(𝐶) =

1

2
𝑓𝑠[𝐶𝑔𝑠𝑛 × ∆𝑉𝐶𝑁

2 − 𝐶𝑔𝑑𝑝 × 𝑉𝐵𝐷
2 + 𝐶𝑔𝑑𝑛 × (∆𝑉𝐶𝑁

2 − 𝑉𝐵𝐷
2 ) − 𝐶𝑠𝑤 × 𝑉𝐵𝐷

2 ]      

(2.11) 

Note that the negative loss part is showing again the equation for the same reason as event 

(B). 

During event (D) where the low-side FET is turning on, the voltage level of the gate 

of the low-side FET is charging to 𝑉𝑔𝑛 while the switching node is getting charged to zero. 

Based on the energy loss equations detailed in Fig 2.4(d), the total capacitive losses during 

event (D) can be derived as: 

𝑃𝑐𝑎𝑝𝑐𝑐𝑚
(𝐷) =

1

2
𝑓𝑠[𝐶𝑔𝑠𝑛 × ∆𝑉𝐶𝑁

2 + 𝐶𝑔𝑑𝑝 × 𝑉𝐵𝐷
2 + 𝐶𝑔𝑑𝑛 × (∆𝑉𝐶𝑁 − 𝑉𝐵𝐷)2 + 𝐶𝑠𝑤 × 𝑉𝐵𝐷

2 ]         

(2.12) 
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By combining the equation (2.9) to (2.12), the total capacitive losses in CCM can be 

derived as: 

 

𝑃𝑐𝑎𝑝_𝑐𝑐𝑚 = 𝑓𝑠[𝐶𝑔𝑠𝑝 × ∆𝑉𝐶𝑃
2 + 𝐶𝑔𝑠𝑛 × ∆𝑉𝐶𝑁

2 + 𝐶𝑔𝑑𝑝 × ∆𝑉𝐶𝑃 × (∆𝑉𝐶𝑃 + 𝑉𝑖𝑛 + 𝑉𝐵𝐷) +

𝐶𝑔𝑑𝑛 × ∆𝑉𝐶𝑁 × (∆𝑉𝐶𝑁 − 𝑉𝐵𝐷)]                                                                   

(2.13) 

One interesting point in equation (2.13) is the loss due to switching node capacitance is out 

of the equation. However, the switching node capacitance does affect the loss equation in the 

sense that higher switching node capacitance increases the turning on/off time of the FETs, 

which will increase the transitional loss of the system. 

The capacitive switching loss for DCM can be analyzed with the same methodology 

and the detailed current flow per event can be referred to Fig 2.5. Note that only event (A) 

and (C) are illustrated in the figure due to the fact that the event (B) and (C) have the same 

charge flow diagram and loss equations as the CCM scenario. 

During event (A) where the high-side FET is turning on, the same derivation can be 

applied as the CCM scenario while understanding the transitional loss is zero due to the fact 

that the inductor current is zero during the high-side FET turning on period. By referring to 

Fig 2.5(a) and apply some derivations, the capacitive switching loss in event (A) can be 

arrived as: 

𝑃𝑐𝑎𝑝_𝑑𝑐𝑚(𝐴) =
1

2
𝑓𝑠[𝐶𝑔𝑠𝑝 × ∆𝑉𝐶𝑃

2 + 𝐶𝑔𝑑𝑝 × (∆𝑉𝐶𝑃 + 𝑉𝑖𝑛 − 𝑉𝑜)2 + 𝐶𝑔𝑑𝑛 ×

(𝑉𝑖𝑛 − 𝑉𝑜)2 + 𝐶𝑠𝑤 × (𝑉𝑖𝑛 + 𝑉𝑜)2]      

  (2.14) 
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During event (C) where the low-side FET is turning off in DCM scenario, the 

inductor current will stay at zero while the switching node oscillates until it settles to 𝑉𝑜. 

During this period, the extra energy needed for switching node to oscillate is provided by the 

output of the converter since both sides of the FETs are turned off. By referring to the 

equation listed in the figure and plug in the initial and final voltage level across the FETs’ 

capacitors, the total capacitive losses during event (C) can be derived as: 

𝑃𝑐𝑎𝑝_𝑑𝑐𝑚(𝐶) =
1

2
𝑓𝑠[𝐶𝑔𝑠𝑛 × ∆𝑉𝐶𝑁

2 + 𝐶𝑔𝑑𝑝 × 𝑉𝑜
2 + 𝐶𝑔𝑑𝑛(∆𝑉𝐶𝑁 + 𝑉𝑜)2 + 𝐶𝑠𝑤 × 𝑉𝑜

2]     

(2.15) 

By combining the equation (2.10), (2.11), (2.14) and (2.15), the total capacitive losses 

in DCM can be derived as: 

𝑃𝑐𝑎𝑝_𝑑𝑐𝑚 = 𝑓𝑠[𝐶𝑔𝑠𝑛 × ∆𝑉𝐶𝑃
2 + 𝐶𝑔𝑠𝑛 × ∆𝑉𝐶𝑁

2 + 𝐶𝑔𝑑𝑝 × ∆𝑉𝐶𝑃 × (∆𝑉𝐶𝑃 + 𝑉𝑖𝑛 + 𝑉𝐵𝐷) −

𝐶𝑔𝑑𝑝 × [(𝑉𝑜+𝑉𝐵𝐷)(∆𝑉𝐶𝑃 + 𝑉𝑖𝑛) − 𝑉𝑜
2] + 𝐶𝑔𝑑𝑛 × [∆𝑉𝐶𝑁 × (∆𝑉𝐶𝑁 − 𝑉𝐵𝐷)] +

𝐶𝑔𝑑𝑛 × [∆𝑉𝐶𝑁(∆𝑉𝐶𝑁 + 𝑉𝑜) − (𝑉𝑜 + 𝑉𝐵𝐷)(𝑉𝑖𝑛 + 𝑉𝐵𝐷 − 𝑉𝑜)] − 𝐶𝑠𝑤 ×

[𝑉𝑖𝑛(𝑉𝑜 + 𝑉𝐵𝐷) − 𝑉𝑜
2]                                                                                                                                                                                                                                                                    

(2.16)  

 

Based on the equation, the increasing on switching node capacitance will lead to less 

capacitive loss. However, this does not count that the increased amount of capacitance will 

lead to more transitional loss, which will turn out increase the total amount of loss for the 

system. 
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Figure 2.3. Charge flow diagrams and loss equation derivations for CCM operation for 

(a) Event A (b) Event B  
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Figure 2.4. Charge flow diagrams and loss equation derivations for CCM operation for 

(a) Event C (b) Event D  
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2.2 Conduction Losses Analysis 

 

2.2.1 Power FETs Conduction Losses Estimation 

The conduction losses across the high-side and low-side FETs are estimated only 

after the FETs have been completely turned on since transitional losses are already accounted 

for as part of the switching losses. For that purpose, the losses can be estimated as the 

integral of the square of the current flowing in the FET while it is on, multiplied by its on 

Figure 2.5. Charge flow diagrams and loss equation derivations for DCM operation for 

(a) Event A (b) Event D 
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resistance. Using the inductor current profile in Fig. 2.1, for CCM scenario, the loss across 

the high-side FET is 𝑅𝑑𝑠𝑜𝑛−𝑝 (𝐼𝐿
2 +

∆𝐼2

12
) (

𝑇𝑜𝑛

𝑇𝑠
)  while it is 𝑅𝑑𝑠𝑜𝑛−𝑛 (𝐼𝐿

2 +
∆𝐼2

12
) (

𝑇𝑜𝑓𝑓

𝑇𝑠
) for the 

low-side FET[]. Combining these losses, and assuming that 𝑅𝑑𝑠𝑜𝑛−𝑝 ≈ 𝑅𝑑𝑠𝑜𝑛−𝑛 = 𝑅𝑑𝑠𝑜𝑛 

(typically the case), and considering 𝑇𝑠 = 𝑇𝑜𝑛 + 𝑇𝑜𝑓𝑓  , the total conduction loss can be 

written as: 

 

 
𝑃𝑅𝐹𝐸𝑇_𝐶𝐶𝑀 = 𝑅𝑑𝑠𝑜𝑛  (𝐼𝐿

2 +
∆𝐼2

12
) 

(2.20) 

 

where IL is the load current of the converter. 

For switching regulators working in DCM scenario, the loss across the high-side FET 

is 𝑅𝑑𝑠𝑜𝑛−𝑝 (
∆𝐼2

3
) (

𝑇𝑜𝑛

𝑇𝑠
), while it is 𝑅𝑑𝑠𝑜𝑛−𝑛 (

∆𝐼2

3
) (

𝑇𝑜𝑓𝑓

𝑇𝑠
) for the low-side FET[]. Combining 

these losses and taking into account the relationship between 𝑇𝑜𝑛 , 𝑇𝑜𝑓𝑓 , and 𝑇𝑠  in DCM 

operation, the total conduction loss due to power FET can be derived as: 

 

 
𝑃𝑅𝐹𝐸𝑇𝐷𝐶𝑀

= 𝑅𝑑𝑠𝑜𝑛 (
2 × ∆𝐼 × 𝐼𝐿

3
) 

(2.21) 

 

2.2.2 Parasitics Conduction Losses Estimation 

Depending on the cost of the regulator, the resistive loss due to the parasitic can take 

a relative substantial portion of the total losses. The resistive parasitic associated with power 

switches is shown in Fig 2.1(a). The conduction loss due to bond-wire/lead-frame at 
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supply/ground can be computed by replacing 𝑅𝑑𝑠𝑜𝑛 with 𝑅𝑝ℎ𝑠 and 𝑅𝑝𝑙𝑠 in Eq. (2.5) and (2.6). 

The conduction losses due to bond-wire/lead-frame resistance at switching node and across 

the parasitic resistance of the inductor can be combined and estimated considering that 

𝑅𝑝𝑠𝑤 + 𝑅𝑖𝑛𝑑  experiences the full inductor current for the full switching period. And the 

equivalent series resistance (𝑅𝑒𝑠𝑟) of the external capacitor experiences only the difference 

between the inductor current and the load current. Assuming that 𝑅𝑝ℎ𝑠 = 𝑅𝑝𝑙𝑠 = 𝑅𝑝𝑠𝑤 = 𝑅𝑝, 

the two losses can be combined and written as: 

 
𝑃𝑃𝑎𝑟𝑎_𝐶𝐶𝑀 = (2𝑅𝑝 + 𝑅𝑖𝑛𝑑) (𝐼𝐿

2 +
∆𝐼2

12
) + 𝑅𝑒𝑠𝑟 ×

∆𝐼2

12
  

(2.22) 

 

 
𝑃𝑃𝑎𝑟𝑎_𝐷𝐶𝑀 = (2𝑅𝑝 + 𝑅𝑖𝑛𝑑 + 𝑅𝑒𝑠𝑟) (

2 × ∆𝐼 × 𝐼𝐿

3
) − 𝑅𝑒𝑠𝑟 × 𝐼𝐿

2  
(2.23) 

 

Comparing Eq (2.17)~(2.18) and (2.19)~(2.20), it is clear that parasitic resistive 

losses can add substantially amount of loss to the whole system since for a low cost package 

and inductor, the total of the parasitic resistance can be comparable to the Rdson of the FETs.   

 

2.2.3 Body-Diode Losses Estimation 

The last source of conduction loss that will be discussed is the loss across the body-

diode of the low-side FET during the dead-time period 𝑇𝑑. The first thing to observe is that as 

for CCM operation where this diode will turn on twice during the switching period (once at 

the beginning of 𝑇𝑜𝑛  and another at the beginning of 𝑇𝑜𝑓𝑓 ), in DCM-only operation, it is 

turned on only once at the beginning of Toff since the inductor current is always zero at the 

begging of Ton in DCM operation. Taking that into account, and considering that the forward 
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voltage VD  of the diode is more or less constant, and that the inductor current is at its 

peak/valley, the loss across the diode for CCM and DCM can be written as: 

 

 
𝑃𝐷𝑖𝑜𝑑𝑒_𝐶𝐶𝑀 = 𝑉𝐷 × 2 × 𝐼𝐿 × (

𝑇𝑑

𝑇𝑠
)  

(2.24) 

 

 
𝑃𝐷𝑖𝑜𝑑𝑒_𝐷𝐶𝑀 = 𝑉𝐷 × ∆𝐼 × (

𝑇𝑑

𝑇𝑠
)  

(2.25) 

 

Note that since 𝑇𝑑 is much shorter than the rate of current change in the inductor, the 

current flow in the diode is assumed to be constant during 𝑇𝑑. Moreover, since 𝑇𝑑 is much 

shorter than 𝑇𝑠, this loss is typically rather small.  

 

2.3 Simulation & Validation 

 

To verify the correctness of the proposed formulas, the power stage of a buck 

regulator has been designed, including the driver stages and non-overlapping circuitries, with 

3V transistors in 90nm CMOS technology. The high-side and low-side power FETs are sized 

as 2:1 ratio to keep the on resistance close(not that close in the technology not though). Note 

that the power FETs and drivers are sized differently for CCM and DCM scenarios to 

roughly balance the conduction and switching losses. To verify the correctness of the 

proposed formulas on all the scenarios, both the traditional rail-to-rail gate control and non-

rail control drivers are designed for CCM and DCM scenarios. For non-rail gate control, the 

intermediate voltage is implemented as an ideal voltage source at half supply in this paper for 
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simplicity purpose. However, this can be easily replaced by a low cost LDO in actual design. 

The detailed information regarding the design parameters and parasitic values can be found 

in Table 2.1 for CCM scenario and Table 2.2 for DCM scenario.  

 

Due to the complicity of the charge flow during the switching event, it is impossible 

to extract the exact capacitive switching losses and transitional losses separately during each 

of the event in simulation. Thus, the proposed methodology to get the total switching losses 

is to measure the total loss of the system first and subtract the conduction losses of each 

component(high-side and low-side FETs, diode, inductor DCR and parasitics), which can be 

acquired with simulation calculator(Cadence ADE calculator).  

In order to fully justify the proposed formulas, simulations across different loads and 

switching frequencies have been completed and summarized. To imitate the most typical 

scenarios, the CCM operation is modeled as Pulse Width Modulation(PWM) mode. Three 

different switching frequencies(2MHz, 3MHz, 4MHz) has been simulated across load level 

of 100mA,150m, 200mA, 250mA, and 300mA. For DCM operation, since it is most 

commonly seen as the application for light load application. Thus, Constant On-Time(COT) 

architecture has been selected as the operation mode. Three different COT conditions(130nS, 

205nS and 290nS High-side FET on time) have been simulated across a load level of 1mA, 

5mA, 10mA, and 15mA. The reason for choosing the above conditions is to fully verify the 

correctness of the proposed formulas under different load level from conduction losses 

dominating the total losses to switching losses dominating the total losses. For each of the 

scenario described, both rail-to-rail gate control and non-rail gate control scenarios have been 

simulated.    
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 For each of the conditions mentioned above, the total conduction losses, switching 

losses and efficiency have been extracted with Cadence Virtuoso calculator and compared 

with the calculation results based on the proposed formulas. And the error in percentage is 

calculated based on: 

 

 
𝐸𝑟𝑟𝑜𝑟 = |

𝐶𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
| × 100%   

(2.26) 

 

The comparison between the calculated and simulated conduction losses and 

switching losses in CCM scenario with different switching frequencies with rail-to-rail gate 

control has been shown in Fig. 2.8. And the efficiency comparison is detailed in Fig 2.6(a) 

Based on the plot, the worst case difference between calculation and simulation for 

conduction loss is less than 6.2%, while the worst case switching loss discrepancy between 

calculation and simulation is 6.3%. Based on the plot, it can be observed that there is a slight 

overestimate on switching losses and underestimate on conduction losses with load 

increasing. This is due to the fact that the diode voltage is a weak function of FET’s 

current(increase with load current) while λ is slightly inversely proportional to FET’s current. 

In the calculation, the author uses the typical diode voltage as 750mV while Ttran and λ are 

only correlated with the simulation at minimum load and the same value are used for the 

higher load current calculation. This will lead to some overestimation on transitional losses 

and some underestimation on diode losses. However, the two discrepancies can somehow 

compensate with each other depending on the dominancy of the loss across the load, which 

lead to the fact that the total efficiency discrepancy between the simulation and calculation is 

less than 0.18%. Although this can not 100% justify the accuracy of the proposed formulas, 
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the author consider this methodology is valid since in most of the actual design scenarios, the 

loss calculation is only the starting point of the design which serves the purpose of finding 

the optimum operating point and which part of the loss is dominating the total amount of 

loss. Thus, having typical values as some of the design parameters follows actual usage of 

the formulas while still getting considerable amount of insight.   

 

Table 2.1 Design parameters for CCM scenario 

𝐕𝐈𝐍(V) 𝐕𝐎(V) 𝐋(µH) 𝐂(µF) 𝐑𝐩𝐡𝐬, 𝐑𝐩𝐥𝐬, 𝐑𝐩𝐬𝐰(mΩ) 𝐑𝐢𝐧𝐝(mΩ) 𝐑𝐞𝐬𝐫(mΩ) 

3 1.2 4.7 2.2 50 50 30 

High-side FET 

𝐑𝐝𝐬−𝐨𝐧(Ω) 

Low-side FET 

𝐑𝐝𝐬−𝐨𝐧(Ω) 

High-side FET 𝐑𝐝𝐬−𝐨𝐧 

non-rail(Ω) 

Low-side FET 𝐑𝐝𝐬−𝐨𝐧 

non-rail(Ω) 

0.125 0.065 0.269 0.131 

 

 

Table 2.2 Design parameters for DCM scenario 

𝐕𝐈𝐍(V) 𝐕𝐎(V) 𝐋(µH) 𝐂(µF) 𝐑𝐩𝐡𝐬, 𝐑𝐩𝐥𝐬, 𝐑𝐩𝐬𝐰(mΩ) 𝐑𝐢𝐧𝐝(mΩ) 𝐑𝐞𝐬𝐫(mΩ) 

3 1.2 4.7 2.2 100 100 30 

High-side FET 

𝐑𝐝𝐬−𝐨𝐧(Ω) 

Low-side FET 

𝐑𝐝𝐬−𝐨𝐧(Ω) 

High-side FET 𝐑𝐝𝐬−𝐨𝐧 

non-rail(Ω) 

Low-side FET 𝐑𝐝𝐬−𝐨𝐧 

non-rail(Ω) 

0.375 0.197 0.807 0.394 
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The comparison between the calculated and simulated conduction losses and 

switching losses in CCM scenario with different switching frequencies with non-rail gate 

control has been shown in Fig. 2.10. And the efficiency comparison is detailed in Fig. 2.7 (a) 

Based on the plot, the worst case difference between calculation and simulation for 

conduction loss is less than 8.1%, while the worst case switching loss discrepancy between 

calculation and simulation is 14.3%. The efficiency difference between the calculation and 

simulation is less than 1%. The reason for the discrepancy between the calculation and 

simulation is the same as it is described in the rail-to-rail CCM case.   

For DCM scenario, the comparison between the calculated and simulated conduction 

losses and switching losses in rail-to-rail scenario with different high-side FET on time(Ton) 

has been shown in Fig. 2.9. And the efficiency comparison is detailed in Fig. 2.6(b). The 

worst case difference between calculation and simulation for conduction loss is less than 

9.3%, while the worst case switching loss discrepancy between calculation and simulation is 

12.1%. The discrepancy on efficiency between the calculation and simulation is less than 

0.79%. Based on the plot, it can be observed that the underestimation and overestimation 

goes into the opposite way. The rationale behind is different: for COT architecture, the diode 

voltage and λ is constant across load since the peak inductor current is constant across load. 

Due to the fact that the IR drop due to the bond-wire parasitic is not considered in the first 

order calculation, for the same amount of Ton, the peak inductor current is slightly smaller in 

simulation than calculation, this causes the simulated system has higher switching frequency 

than the calculation by around 5% which will lead to higher switching losses and lower 

conduction losses in simulation. 
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The comparison between the calculated and simulated conduction losses and 

switching losses in DCM scenario with non-rail gate control has been shown in Fig. 2.11. 

And the efficiency comparison is detailed in Fig. 2.7(b) Based on the plot, the worst case 

difference between calculation and simulation for conduction loss is less than 12.9%, while 

the worst case switching loss discrepancy between calculation and simulation is 11.1%. The 

discrepancy on efficiency between the calculation and simulation is less than 0.63%. The 

reason for the discrepancy between the calculation and simulation is the same as it is 

described in the rail-to-rail DCM case. 

To demonstrate the difference between the proposed formulas and the formulas 

illustrated in the state of the art buck regulator loss analysis[4-5]. The switching losses part is 

plotted with 2MHz, CCM scenario and rail-to-rail gate control in Fig. 2.12 with simulation 

results, the proposed calculation results and the calculation results based on[4-5]. The 

proposed formulas better tracks the simulation results by an average of 5.6%  
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Figure 2.6. The comparison between calculated and simulated power conversion 

efficiency in CCM and DCM scenarios with rail-to-rail gate control(a) CCM (b) DCM 

 

(a) 
(a) 

(b) 

(b) 
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Figure 2.7. The comparison between calculated and simulated power conversion 

efficiency in CCM and DCM scenarios with non-rail gate control(a) CCM (b) DCM 

 

(a) 

(b) 
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Figure 2.8. The comparison between calculated and simulated switching & conduction 

losses in CCM scenarios with rail-to-rail gate control: (a) CCM with 2MHz switching 

frequency (b) CCM with 3MHz switching frequency (c) CCM with 4MHz switching 

(a) 

(b) 

(c) 
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Figure 2.9. The comparison between calculated and simulated switching & conduction 

losses in DCM scenarios with rail-to-rail gate control: (a) DCM with 130nS Ton (b) 

DCM with 205nS Ton (c) DCM with 290nS Ton 

(a) 

(b) 

(c) 
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Figure 2.10. The comparison between calculated and simulated switching & conduction 

losses in CCM scenarios with non-rail gate control: (a) CCM with 2MHz switching 

frequency (b) CCM with 3MHz switching frequency (c) CCM with 4MHz switching 

(a) 

(b) 

(c) 
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Figure 2.11. The comparison between calculated and simulated switching & conduction 

losses in DCM scenarios with non-rail gate control: (a) DCM with 130nS Ton (b) DCM 

with 205nS Ton (c) DCM with 290nS Ton 

(a) 

(b) 

(c) 
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2.4 Conclusion 

 

This chapter presented the derivation of comprehensive formulas for estimating both 

switching and conduction losses in buck converters operating in CCM/DCM with rail-to-rail 

as well as non-rail gate control. The formulas can be used to correctly optimize the size of the 

power FETs as well as estimating the allowed budget for parasitics in order to achieve the 

best possible efficiency. The formulas have been verified via simulation results and 

comparison shows the proposed formulas are precise across all the difference scenarios 

regarding load/switching frequency variations. 

 

 

Figure 2.12. The comparison between calculated switching losses with proposed formulas in 

this thesis, calculated switching losses with formulas proposed in[4-5], simulated switching 

losses in CCM scenarios at 2MHz switching frequency. 



www.manaraa.com

59 

 

 

2.5 References 

 

[1] S. Bandyopadhyay, Y. K. Ramadass, and A, P. Chandrakasan, “20 µA to 100 mA DC–

DC Converter With 2.8-4.2 V Battery Supply for Portable Applications in 45 nm 

CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2807-2820, Dec. 2011. 

[2] Wei Fu et al., “A DCM-only Buck Regulator with Hysteretic-Assisted Adaptive 

Minimum-On-time Control for Low-Power Microcontrollers,” Tran. on Power 

Electronics, accepted for publication. 

[3] Weiping Zhang et al., “The Dynamic Power Loss Analysis in Buck Converter,” IPEMC 

‘09,  May, 2009. 

[4] Xiaopeng Wang et al., “Switching Losses Analysis in MHz Integrated Synchronous 

Buck Converter to Support Optimal Power Stage Width Segmentation in CMOS 

Technology,” IEEE ECCE 2010,  Dec, 2010. 

[5] Chia-Hsing Li et al., “Accurate Power-Loss Estimation for Continuous-Current-

Conduction-Mode Synchronous Buck Converters,” ASID 2012, Aug, 2012. 

[6] Ming-Dou Ker et al. “Impact of MOSFET Gate-Oxide Reliability on CMOS 

Operational Amplifier in a 130-nm Low-Voltage Process ,” IEEE Transaction on 

Device and Materials Reliability, vol. 8 no. 2, pp. 394-405, June. 2008. 

[7] Gui, D et al. “Gate oxide integrity failure caused by molybdenum contamination 

introduced in the ion implantation,” IPFA 2008, July. 2008.  

[8] Wei Fu, Siang Tan Tong, and Ayman Fayed, “Switching and Conduction Loss Analysis 

of Buck Converters Operating in DCM-only Scenarios,” IEEE Int. symposium on 

circuits and Systems (ISCAS 2013), pp. 921-924, May 2011 



www.manaraa.com

60 

 

 

CHAPTER III. A FULLY-INTEGRATED BUCK REGULATOR WITH ON-CHIP 

PASSIVES AND CIRCUIT STUFFING 

 

As it is discussed in chapter 1, nanometer CMOS mixed-signal SoCs require a large 

number of independent and well isolated power domains due to the demand for increasing 

the functional capabilities of these devices while reducing the power consumption and 

implementation size and cost. Currently, the most commonly-employed strategy in industry 

to generate multiple adaptive on-chip power supply domains is to use a single conventional 

switching regulator to generate a shared 1.8V power supply, followed by an array of fully-

integrated linear regulators to generate all the necessary on-chip power supply domains. This 

strategy is particularly attractive in terms of cost as fully-integrated linear regulators require 

no off-chip passive components or package pins, which allows implementing as many of 

them as needed with little cost overhead. However, in terms of power efficiency, this strategy 

is sub-optimal since linear regulators have poor efficiency, particularly if the difference 

between the input and output voltage is large. In fact, generating 0.8V power supply from 

1.8V input would entail only 44% efficiency. Therefore, for the digital loads operating from 

1V or less power supply levels, the impact of this poor efficiency is quite significant. 

In order to address this problem, there has been some research conducted on the 

feasibility of replacing these linear regulators with more efficient switching alternatives that 

employ only on on-chip components to avoid the additional cost associated with off-chip 

passives [1]. In fact, some recent work demonstrated inductor-based switching regulators 

with on-chip inductors [2-5], as well as capacitor-based switch-C regulators [6-7]. However, 

the architecture presented in [2] consumes 1.5mm
2
 silicon area plus not able to solve the 

reliability issue mentioned above(e.g. 1.8V as the input level). The solution presented in [3] 
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requires SiGe process, which is not commonly used in high-volume, low-cost industrial 

application. The architecture detailed in [4,5] is able to achieve impressive efficiency. 

However, the solution requires bond-wire inductance as the power inductor of the regulator. 

Such a solution requires extra area on bond-pads as well as extra cost on the bonding process. 

Moreover, such architecture is only compatible with type of packages that contains relative 

high inductance(e.g. 3nH or above). Therefore, the type of packages(e.g. BGA) with less 

than 1nH bond-wire will not be compatible with the architecture. 

In this chapter, we present a 588MHz switching regulator that employs only on-chip 

inductor and capacitors and is implemented in standard 65nm CMOS technology without any 

special process flow for on-chip passives. The presented regulator is designed to operate 

from a 1.8V input to generate an output that can be adapted between 0.8V to 1.2V and 

delivers a maximum of 30mA load current. The solution to each of the issues mentioned 

above will be discussed separately in the section of proposed architecture and circuit 

implementation. 

3.1 Feasibility Analysis and Optimization 

 

Before discussing buck regulator design, we need to understand the limitations and 

requirement to integrate the inductor and capacitor on silicon. By plug in the basic formulas 

for buck regulators, the minimum inductor value needed to maintain Continuous Conduction 

Mode(CCM) for a given input/output/load can be represented as[1]:  

 

𝐿𝑚𝑖𝑛 =

(1 −
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
⁄ ) × 𝑉𝐼𝑁

2 × 𝑓𝑠 × 𝐼𝐿

  

(3.1) 
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Where 𝑉𝐼𝑁  and 𝑉𝑂𝑈𝑇 is the input/output voltage of the regulator; 𝑓𝑠  is the switching 

frequency of the regulator; and 𝐼𝐿is the load. Moreover, based on the choice made in eq. (3.1), 

the minimum capacitance required to maintain the output voltage ripple is:  

 
𝐶𝑚𝑖𝑛 =

1

8 × 𝑓𝑠 × (
𝑉𝑟𝑖𝑝𝑝𝑙𝑒

2 × 𝐼𝐿
− 𝑅𝐸𝑆𝑅)

 
(3.2) 

 

Where 𝑅𝐸𝑆𝑅 is the Effective Series Resistance(ESR) of the output capacitance. Note 

that for both on chip capacitors and modern multi-layer ceramic capacitors, the ESR is 

typically small enough to be neglected(e.g. around 10m Ohm) during the ripple calculation.  

Due to the inversely proportional relationship between passive components and 

switching frequency in eq. (3.1) and eq. (3.2), increasing the switching frequency of the buck 

regulator is the most effective method for reducing the size of the passive components and 

particularly that of the inductor. However, this is rarely used in traditional analog power 

CMOS technologies due to the large feature size and high threshold voltage of transistors in 

these technologies. In order to maintain the high efficiency for the converters, the most 

commonly seen buck regulators have been using switching frequencies limited to the range 

of 0.5Mhz to 4Mhz[8].  
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The recent nanometer CMOS technologies provide good opportunities to power 

converters to increase the switching frequency while maintain the same efficiency. This is 

due to the fact that nanometer CMOS technologies have transistors with smaller feature size 

and low threshold voltage. 

In order to verify the feasibility of implementing the fully integrated buck regulator 

with nanometer CMOS technologies, the two major components of power losses in the power 

transistors are considered: switching loss and conduction loss[8]: 

 
 𝑃𝑙𝑜𝑠𝑠 = 𝐶𝑒𝑞 × 𝑉𝐼𝑁

2 × 𝑓𝑠 + (𝐼𝐿
2 +

∆𝐼2

12
) × 𝑅𝑂𝑁  

(3.3) 

 
𝑅𝑂𝑁 =

𝐿

𝜇 × 𝐶𝑜𝑥 × 𝑊 × (𝑉𝑔𝑠 − 𝑉𝑇 )
 

(3.4) 

   

 𝐶𝑒𝑞 = 𝛼 × 𝑊 × 𝐿 × 𝐶𝑜𝑥 (3.5) 

 

Where 𝐶𝑒𝑞  is the total equivalent capacitance at the gate of transistor while 𝛼 is the ratio 

factor;  ∆𝐼 is the peak to peak inductor current and RON is the “on” resistance of the power 

transistor. Here we assume the high-side and low-side power transistors are sized around 2: 1 

so there 𝑅𝑂𝑁 can be considered the same for both power transistors. The Table 3.1 shows a 

power loss comparison between 0.35µm and 65nm technologies assuming the same input, 

output, load condition, and most importantly the same 𝑅𝑂𝑁 to ensure the same conduction 

losses. By refereeing to the table, the switching frequency in the 65nm process can be  
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increased by a factor of 60 while maintaining the same power conversion efficiency. Thus, 

the on-chip inductor size can be reduced to 10nH~20nH with operating frequency around 

60MHz to 180MHz.   

 

Table 3.1. Loss and passive components comparison between 0.35µm and 65nm 
technologies 

Technology 0.35µm 65nm 

Threshold Voltage 1.1V 0.4V 

Feature Size 0.35µm 65 m 

Switching frequency for same power loss(assume 
𝑽𝑰𝑵 = 𝟏. 𝟖 𝐕) 

Typical 1~3Mhz 60~180MHz 

Passive Components 2.2uH,1uF 20nH, 5nF 

 

In order to calculate the optimized operating point of the regulator, we first plug 

𝑉𝐼𝑁 = 1.8𝑉, 𝑉𝑂𝑈𝑇 = 0.9𝑉 in eq. (3.1) while assuming we can maintain CCM operation for 

the regulator under the minimum load condition at 20 mA. Therefore, the relationship 

between the minimum inductor required and switching frequency can be computed as: 

 𝑓𝑠 × 𝐿 ≥ 11.25 𝐻𝑧 × 𝐻  (3.6) 

 

The above equation confirms the inverse relationship between the switching frequency and 

the inductor. By choosing the optimized switching frequency, we can calculate the size of the 

power FET of the regulator so as to achieve the best efficiency. Moreover, since the on-chip 

inductor typically has relative low Q than the off-chip ones, the parasitic resistor associated 

with the inductor also needs to be taken into account as part of the loss formulas. Another 

design boundary for choosing the optimized inductor value is, if the inductor size is too large, 
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the area overhead comparing to the linear regulator will massively reduce the attractiveness 

of the solution; if the inductor size is chosen to be too small, the very high switching 

frequency(e.g. beyond 1 GHz) loop design will be very tough and less robust. By assuming 

the parasitic resistor associated with the on-chip inductor is roughly 0.5 Ohm/nH, we can 

plug in the parameter into the eq. 2.X. and eq. 2.X. to compute the conductional losses and 

switching losses of the proposed regulator: 

 
𝑃𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑑 = (𝐼𝐿

2 +
∆𝐼2

12
) × (𝑅𝑂𝑁 + 𝑅𝑖𝑛𝑑)  

(3.7) 

 𝑃𝑙𝑜𝑠𝑠_𝑠𝑤 = 𝐶𝑒𝑞 × 𝑉𝐼𝑁
2 × 𝑓𝑠 (3.8) 

 
𝑅𝑖𝑛𝑑 =

6

𝑓𝑠
× 108 

(3.9) 

 

By plug in eq. (3.9) into eq. (3.7) and combine eq. (3.7) and eq. (3.8), the total loss of the 

regulator can be derived as: 

 
𝑃𝑙𝑜𝑠𝑠 = (𝐼𝐿

2 +
∆𝐼2

12
) × (𝑅𝑂𝑁 +

6

𝑓𝑠
× 108) + 𝐶𝑒𝑞 × 𝑉𝐼𝑁

2 × 𝑓𝑠   
(3.10) 

 

Here the value of 𝑅𝑂𝑁 and 𝐶𝑒𝑞 is determined by how the high-side and low-side power FETs 

are sized and typically, these two parameter is inversely proportional to each other. Thus, the 

total loss for a specific load will be a function of switching frequency and the size of the 

power FET. By assuming we can always find the optimum size of the power FETs at a 

specific load. The plot for total loss versus frequency at 20mA with optimized power FETs 
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size is shown in Fig. (3.1). Note that the calculation is based on the assumption that the 

power FETs will be cascaded. Thus, the switching loss formula will not be rail-to-rail 

switching formula expressed in eq. (3.10).     

 

Based on the above plot, we can find out that under the optimized power FETs size, 

the calculated efficiency of the regulator increases when the switching frequency increases 

from 500MHz to 600MHz. However, after 600MHz, the calculated efficiency does not 

further increase. Considering the increased complicity with respect to the increased 

frequency, we choose 600MHz as the operating frequency of the proposed fully-integrated 

Figure 3.1. The calculated efficiency of the regulator with different power FETs size under 

different switching frequency 
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buck regulator. Moreover, the capacitive coupling and magnetic coupling will both become 

worse for the inductor at higher switching frequency. For switching frequency equal or less 

than 500MHz, the silicon area overhead on the inductor by itself will be larger than 24nH, 

which makes the proposed solution less attractive. 

  

3.2 Proposed Architecture 

 

Fig. 3.2 shows a block diagram of the proposed fully-integrated buck regulator. The 

architecture employs a voltage mode Pulse Width Modulation (PWM) control scheme with 

588MHz switching frequency. The choice of this frequency is based on analyzing the 

switching and conduction losses of the regulator, the minimum values of the inductor and 

capacitor that would be needed, and the complexity of designing the control loop at such high 

speed, which has been discussed in the previous section of the paper. At such frequency it 

can be shown using standard buck regulator design equations [8] that an inductor of 20nH 

will maintain Continuous Conduction Mode (CCM) of operation down to 20mA, and 

combined with a 300pF output capacitor will produce 60mV of output ripple voltage. With 

these values, the LC tank pole is located at around 65MHz. To achieve a high DC loop gain 

while ensuring the stability of the converter, type-I compensation is employed [9], where the 

error amplifier has 50dB of DC gain, and an output pole at about 10kHz. This ensures that 

the regulator’s control loop is a first order loop with a DC gain of 65dB, a dominant pole at 

10kHz, a unity gain frequency of about 10MHz, and a phase margin of almost 90 degrees. 

Compared to other types of compensation, type-I has the advantage of requiring minimal 
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passive components (a single 5pF capacitor), and thus is much more area efficient. Although 

type-I compensation reduces the bandwidth of the regulator’s loop more than other types, the 

starting high switching frequency and wide bandwidth of the proposed regulator justifies 

using type-I compensation in order to reduce silicon area. Moreover, even with type-I 

compensation, the proposed buck regulator still achieves 20~50 times wider bandwidth than 

corresponding fully-integrated linear regulators [9], and therefore features significantly faster 

dynamic operation. 

 

 

 

 

 

 

 

 

Figure 3.2. Top level block diagram for proposed buck regulator showing the self-

regulation scheme, loop compensation, and the cascoded power switches. 
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3.3 Circuit Implementation 

 

3.3.1 Power Train and Self-Regulation 

Switching losses contribute significantly to the overall losses of the proposed 

regulator due to the high switching frequency. Therefore, the high-side and low-side power 

FETs are chosen to be 1.2V-rated transistors available in standard 65nm technology. These 

transistors have small gate capacitance, and thus employing them minimizes the switching 

losses. However, due to their low voltage rating, interfacing with 1.8V input becomes a 

challenge. To maintain the reliability of the gate-source junction of these transistors, the gate-

drive signal is designed to switch between Vint and 1.8V for the high-side FET, and between 

0V and Vint for the low-side FET, where Vint ranges from 0.8V to 1.2V. This ensures that the 

voltage across the gate-source junctions never exceeds the 1.2V rating of the transistors. To 

maintain the reliability of the gate-drain and drain-source junctions, two additional 1.2V-

rated transistors are cascoded with the power FETs as shown in Fig. 3.2. The top cascode 

transistor has a gate bias of (0.4 × VIN), while the bottom cascode transistor has a gate bias 

of (0.65 × VIN). This guarantees that the gate-drain and drain-source voltages of the power 

FETs never exceed 1.2V under all switching conditions. The reliability of the cascode 

transistors themselves are maintained since the drain-bulk junction of the 1.2V-rated 

transistors can handle 1.8V. 

The above scheme, however, requires an additional power supply 𝐕𝐢𝐧𝐭  in order to 

operate the gate-drive circuits. This power supply is preferred to be efficient so as not to lose 

the benefit of reducing the switching losses, which results from limiting the swing of the gate 

control signals to (𝐕𝐈𝐍 − 𝐕𝐢𝐧𝐭)  and (𝐕𝐢𝐧𝐭)  for the high-side and low-side power FETs 

respectively. This limited swing reduces the switching losses by a factor of ~4 compared to 



www.manaraa.com

70 

 

 

rail-to-rail switching from 1.8V input, and the benefit of that would be lost if 𝐕𝐢𝐧𝐭  is 

implemented inefficiently (i.e. by using a linear regulator from the input). To preserve the 

efficiency benefit, and to also eliminate the area overhead of an extra power supply, the 

proposed regulator employs a self-regulation loop where its own efficient output serves as 

𝐕𝐢𝐧𝐭. Nonetheless, this entails potential startup issues when the output of the regulator is not 

yet at the proper voltage level. To resolve this, a potential divider from the input is used to 

operate the gate-drive circuits during startup, and once the output of the regulator reaches its 

proper level, the regulator activates the self-regulation loop for normal operation as shown in 

Fig. 3.1. The output voltage detector is implemented using a comparator with a 200mV 

hysteretic band and a SR latch.   

 

3.3.2 Compensator 

Fig. 3.3 shows the simplified schematic of the proposed compensator. This 

compensator5 is essentially a current mirror based OTA with cascaded output. The input of 

the compensator is a differential pair(𝑀𝑁1 and 𝑀𝑁2) while the output node will be connected 

to the input of the PWM comparator. The functionality of this block is to: a) provide enough 

gain to the system so that the DC error of the system is minimized(e.g. 60dB loop gain is 

equivalent to 1mV DC error); b) Create a dominant pole at the node 𝑉𝑃𝑊𝑀 so as to stabilize 

the system. As it is discussed in the previous section, the pole location at node 𝑉𝑃𝑊𝑀 is at 

10kHz with 50dB DC gain. Since the compensator is operated under the supply voltage, all 

the transistors implemented are 1.8V rating devices so as to meet the reliability requirement.  
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3.3.3 PWM Comparator 

Fig. 3.4 and 3.5 shows the schematic of the proposed PWM comparator and its buffer 

stages. This comparator is intended to generate the control pulse width by comparing the 

signal between the ramp generator and the output of the compensator, generating the pulse 

for the non-overlap generator. Thus, it requires relative fast speed of the comparator. In order 

to mitigate this issue, 1.2V-rated transistors are used for all the devices that are in the signal 

path to reduce the parasitic capacitance with the intermediate supply voltage as the supply. 

To ensure the headroom as well as the DC common mode of the operation, the supply of the 

input stage of the PWM comparator is 1.8V with input transistor bulk tied to source. The 

proposed PWM comparator is a fully-differential current mirror based comparator. This type 

of architecture has the nature of high bandwidth and great noise immunity, which is the best 

fit for the application as a PWM comparator. The buffer stage of the comparator is composed 

of a differential to single-ended converter and its corresponding buffers. This converter is 

implemented so as to provide high gain to generate the pulse for the non-overlap generator 

from the differential signal coming out of the PWM comparator. 



www.manaraa.com

72 

 

 

  

 

Figure 3.4. Schematic of the proposed PWM comparator of the fully-integrated buck 

regulator 
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Figure 3.3. Schematic of the proposed compensator of the fully-integrated buck regulator 
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3.3.4 Dynamic Level Shifter 

Due to the proposed non-rail-to-rail control topology for the buck regulator. The 

driver signal of the high-side power FET has to be between 𝑉𝑖𝑛𝑡 and 𝑉𝐼𝑁 while the output 

signal of the non-overlap generator is between 0 and 𝑉𝑖𝑛𝑡. Thus, there has to be a level shifter 

boosting up both the low-end and high-end levels of the signal. The schematic of the 

proposed dynamic level shifter is shown in Fig. 3.6. This level shifter is implemented so as to 

generate the gate control voltage of the high-side power FET. Comparing the traditional level 

shifter that is only capable of changing the voltage level to one of the rails[10], the proposed 

dynamic level shifter is able to boosting both rails by adding AC coupled capacitors at the 

input of the circuit. 

Figure 3.5. Schematic of the proposed buffer stage of the PWM comparator 
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3.4 On-Chip Inductor Design and Modeling 

 

The on-chip inductor employed by the proposed regulator is designed using the top 

copper metal layer (Metal-6) available in the process, which is thicker than all the lower 

metal layers and farthest from the substrate. This allows for lower parasitic resistance and 

capacitance, and thus better inductor quality factor (Q). The process parameters are used 

within an electromagnetic simulator, Agilent Advance Design System (ADS), to arrive at an 

inductor design that maximizes Q at the target switching frequency of 588MHz. The inductor 

Figure 3.6. The schematic of the proposed dynamic level shifter 
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is designed with a square inner core of 116µm and outer core of 350µm. It contains 8.5 turns, 

with the width of each winding at 12µm and the spacing between the windings at 2µm. 

Instead of the classic 9-elements inductor model that is typically used for modeling small 

inductors in RF circuits [11], we propose using the 3-section lumped circuit model shown in 

Fig. 3.7 to model the behavior of the inductor. This enables more accurate modeling of the 

capacitive and resistive parasitics between the inductor and the substrate, particularly when 

the inductor is used for power circuits where it has larger value and longer winding length 

and width. With the aid of ADS, the model parameters for each section of the model can be 

computed and are listed in Table 3.2 while the ADS S-parameter simulation result is shown 

in Fig 3.8. As shown, the total series resistance of the inductor is 7.8Ω, which is large enough 

to dominate the losses in the proposed regulator. Note that this series resistance can be 

reduced by stacking other thick metal layers that may be available in some special flavors of 

65nm technology. However, only one metal layer is used in this design to maintain the 

standard process flow. Since only the top metal layer is utilized for implementing the 

inductor, the proposed design leverages the area directly underneath the inductor to 

implement the rest of the regulator’s circuitry. This significantly reduces the total area of the 

regulator and enables it to compete with linear regulators counterparts. Implementing 

capacitors underneath on-chip inductors was explored in Voltage Controlled Oscillators 

(VCO) [12]. Buck regulators share some features with VCOs, particularly that one side of the 

inductor is always connected directly to the output capacitor. Thus, the output capacitor can 

be stuffed underneath the on-chip inductor without much impact on efficiency due to 

magnetic coupling. Moreover, since the operating frequency of the proposed regulator is 

much lower than RF frequencies, the inductor generates much less magnetic flux. This can be 
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leveraged to stuff other active circuits such as the power FETs, input capacitor, and control 

circuits underneath the inductor as well. The full layout of the proposed regulator is shown in 

Fig. 3.9, where the input and output capacitors and all active circuits are stuffed underneath 

the windings of the inductor. The core area of the inductor is left empty to avoid excessive 

losses since the magnetic flux will be concentrated at the center of the core area. With this 

layout strategy, the area of the regulators is reduced by 50%. Note that the on-chip 270pF 

input capacitor is needed to mitigate the ringing that occurs at the regulator’s input due to the 

interaction between the high switching frequency and the parasitic inductance associated 

with the input power pins. 

 

Figure 3.7. Three-segment lumped circuit model of the on-chip inductor. 
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Table 3.2. Design Parameter for On-Chip Inductor  

Item Value 

Ls 6.6nH each, 19.8nH in total 

Rs 2.6Ω each, 7.8Ω in total 

Cox 311fF 

Csub 11fF 

Rsub 50Ω 

Q factor 8.4@588Mhz 

Resonant Frequency 1.8Ghz 

Area 0.12 mm
2
 

 

Figure 3.8. Proposed Inductor S-Parameter Simulation Results: Red Curve Inductor, 

Blue Curve ideal elements 
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Figure 3.9. The layout of proposed buck regulator with circuit stuffing. 
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3.5 Experimental Results 

 

The proposed regulator has been implemented in standard 65nm CMOS process and 

extracted layout simulations have been performed. This includes the extracted 3-section 

model of the inductor and all package parasitics. The simulated efficiency of the regulator 

versus load current and output voltage and how they compare to a linear regulator are shown 

in Fig. 3.10. At 1.8V input and 20mA load current, the regulator achieves 13.7% and 10% 

efficiency improvement over a linear regulator at 0.8V and 0.9V output voltage respectively. 

The dynamic performance of the regulator is shown in Fig. 3.11. The regulator starts up with 

the gate drive circuits operating from a potential divider from the input as shown in Fig. 3.2, 

and then switches to the self-regulation loop as described above. The regulator’s response 

shows a settling time of less than 40ns for a positive 20mA load step and about 120ns for a 

negative 20mA load step, both with overshoot/undershoot of less than 150mV. The dynamic 

voltage scaling response of the regulator shows less than 240ns settling time for a 200mV 

output voltage step. This fast dynamic performance is attributed to the high switching 

frequency and bandwidth of the regulator. The peak-to-peak output voltage ripple of the 

regulator is shown to be about 60mV. This ripple voltage is well within ±5% of the output 

voltage, which is the typical requirement for digital loads that this regulator is targeting.  
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Figure 3.10. The simulated efficiency of the extracted layout of the proposed regulator: a) 

versus load current, and b) versus output voltage. 

(a) 

(b) 
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3.6 Conclusion 

 

In this chapter, we present a 588MHz switching regulator that employs only on-chip 

inductor and capacitors and is implemented in standard 65nm CMOS technology without any 

special process flow for on-chip passives. The presented regulator is designed to operate 

from a 1.8V input to generate an output that can be adapted between 0.8V to 1.2V and 

delivers a maximum of 30mA load current. To circumvent the large silicon area associated 

with the on-chip inductor, the presented regulator utilizes the full silicon area of the on-chip 

inductor by stuffing the rest of the regulator’s circuitry directly underneath the inductor. This 

includes the power train, input and output decoupling capacitors, and the control circuits. 

Figure 3.11. Transient response of the extracted layout of the proposed regulator 

showing response to load/output voltage steps and self-regulation transition. 
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With this circuit stuffing strategy, the regulator’s area is reduced to essentially the area of the 

on-chip inductor, which corresponds to cutting the total area of the regulator by 50%. To 

enable switching at 588MHz with low switching losses, low-voltage 1.2V core transistors are 

used as power switches. To ensure the reliability of these transistors with a 1.8V input, an 

intermediate 0.9V power supply is used to operate the gate drive circuits of the power 

switches. The proposed regulator employs a self-regulation scheme where its own efficient 

output is used to power the gate drive circuits, which eliminates the overhead of 

implementing an additional power supply and improves the overall power efficiency of the 

regulator. The proposed regulator delivers up to 13.7% better efficiency than a corresponding 

LDO and features fast dynamic response with settling time of 240ns for a 200mV output 

voltage step, and as short as 40ns for a 20mA load current step. It can be used in low-power 

micro-controllers to implement on-chip power supplies for digital loads with better efficiency 

than LDOs and reduced area compared to other switching regulators with on-chip passives. 
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CHAPTER IV. A DCM-ONLY BUCK REGULATOR WITH HYSTERETIC-ASSISSTED 

ADAPTIVE MINIMUM On-TIME CONTROL FOR LOW-POWER 
MICROCONTROLLERS 

 

Microcontrollers are central to many power-sensitive industrial and consumer 

applications, each of which has different requirements in terms of powering options and the 

passive components they can accommodate. Thus, power-efficient microcontrollers that can 

support a wide range of potential operating scenarios with minimal customization overhead 

are in an ever increasing demand. Since the internal power regulators within a 

microcontroller typically determine how the microcontroller may be powered and most of the 

passive components needed, they represent a critical component of microcontroller design. To 

reduce power consumption, the latest trend in microcontrollers is to integrate a buck 

regulator to efficiently deliver power to the digital core. Such regulator is typically required to 

support up to a 40mA load, and provide an output between 0.9V and 1.4V that can be adapted 

based on the desired performance and power consumption of the digital core [1-3]. 

Moreover, since microcontrollers spend over 50% of their operation time in idle and low-

power modes, the regulator must maintain high power conversion efficiency even at loads as 

low as 200µA. Furthermore, to support multiple powering options for the microcontroller, 

such as an external on-board regulator, a single Li-Ion battery, or up to two button-cell 

batteries, the regulator must be able to handle inputs between 1.8V and 4.2V. Additionally, to 

accommodate varying size and cost limitations in different applications, the regulator must be 

able to support a wide selection of off-chip passives in terms of value, tolerance, and footprint 

without calibration, or re-optimization in order to minimize system integration cost. Finally, it 
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should constitute a small overhead in terms of the microcontroller’s silicon area and 

implementation cost. 

To meet the above requirements, this paper presents a 40mA, buck regulator with 

voltage-mode Hysteretic-Assisted Adaptive Minimum Constant On-Time (HA-AMOT) control 

[4] that results in robust performance across a wide range of input, output, and passive 

components values without calibration or trimming. The proposed regulator operates in 

AMOT mode with minimized inductor peak current towards the lower end of the load range 

and automatically transitions to hysteretic mode towards the higher end of the range when the 

inductor peak current is insufficient to sustain the load in DCM. When in hysteretic mode, it 

always operates right at the border of DCM, and thus continues to minimize the inductor peak 

current and enables optimized efficiency with the smallest possible power switch. As a result, 

DCM operation (i.e. no loop compensation) with minimized inductor peak current (i.e. low 

losses) is ensured across the entire load range. The AMOT and hysteretic modes utilize the 

same circuits interchangeably, so effectively only a single controller is implemented, 

resulting in compact silicon area and low quiescent current. Moreover, power-gating is 

employed to further reduce quiescent current to enhance efficiency at sub-1mA loads. The 

thesis is organized as follows: section 4.1 discusses the limitations of existing schemes in 

handling a wide range of operating scenarios in DCM; section 4.2 and 4.3 present the 

proposed scheme and its circuit implementation; section 4.4 presents the experimental results. 

 

 

 



www.manaraa.com

87 

 

 

4.1 Limitations of Existing Control Schemes in Handling a Wide Range of Operating 

Scenarios in DCM 

 

With a maximum load of only 40mA, forcing the regulator to operate in the 

inherently stable DCM [5] for the entire load range is logical as it eliminates the need for loop 

compensation, and thus reduces silicon area and quiescent current. Combining that with PFM 

control [6-9], or PWM with segmented power switches [10] helps in preserving high light-

load efficiency by scaling the switching losses with the load. Power and clock-gating may 

also be used to further reduce quiescent and enhance light-load efficiency [6-7, 11-12]. A 

popular PFM scheme is the Constant On-Time (COT) controller [6-9], which turns on the 

regulator’s high-side power switch for a constant on-time (𝑇𝑜𝑛) once the output voltage drops 

below a reference level. However, handling a wide range of input, output, and inductor values 

is quite difficult with such scheme due to the strong dependency of the inductor peak current 

on these parameters. Thus, ensuring DCM (i.e. inductor peak current is at least double the 

load current [5]) under all possible operating scenarios inevitably results in excessive 

inductor peak current in some scenarios, leading to degraded efficiency unless the controller 

is recalibrated based on the scenario. Conventional Adaptive COT (ACOT) control can 

partially solve this problem by making the on-time inversely proportional to the difference 

between the input and output voltages [13]. This produces a constant inductor peak current 

regardless of input and output voltages, and thus automatically eliminates excessive inductor 

peak current due to that. However, it fails to automatically adapt to a wide range of inductor 

values, and thus excessive inductor peak current continues to be a challenge. Current-mode 

control similar to [10, 14] may seem to offer a solution to this problem as they directly control 

the inductor peak current regardless of the operating scenario. However, in addition to the 
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complexity, area and power overhead of inductor current sensing, the inductor peak current 

will typically exhibit large errors due to random mismatches, inaccurate on-chip elements, and 

variability in the control loop’s delay. Accounting for these errors while ensuring DCM in all 

scenarios still leads to excessive inductor peak current, especially in scenarios with 

maximum input, minimum output, and minimum inductor. Voltage-mode hysteretic 

controllers in DCM can maintain a minimized inductor peak current for any load regardless 

of the input, output, and inductor values as they always operate at the border of DCM. 

However, as will be detailed in section 4.2, they result in much degraded efficiency towards 

the lower end of the load range due to excessively high switching frequency. 

 

4.2 Proposed Control Scheme 

 

In a conventional ACOT controller, shown in Fig. 4.1a, the constant on-time Ton is 

inversely proportional to the difference between the input Vin and the output Vo [13]. Thus, 

for a given inductor L, setting Ton such that the inductor peak current Ip is exactly twice the 

maximum load current ILmax  ensures DCM operation for the entire load range with the 

minimum possible Ip regardless of Vin and Vo. However, if a wide range of inductor values 

must be supported, ensuring DCM requires setting Ton  long enough such that Ip =

2ILmax(Lmax L⁄ ), where Lmax is the maximum possible inductor, and L is the actual inductor 

being used. Thus, when the minimum possible inductor Lmin  is used, Ip  becomes 

2ILmax(Lmax Lmin⁄ ), which is excessive if the inductor range to be supported is wide, leading 

to degraded efficiency. To avoid that, we propose minimizing Ton  such that Ip = 2ILmax 
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when the minimum possible inductor is used [4]. In this case, the controller is termed 

Adaptive Minimum Constant On-Time (AMOT) [4]. Such controller produces the minimum 

possible constant Ip  to maintain DCM for the entire load range when L = Lmin , but for 

L > Lmin , it fails to maintain DCM towards the higher end of the load range due to 

insufficient Ip, which forces the inductor into Continuous Conduction Mode (CCM). For the 

AMOT controller alone, Ip  and the switching frequency fs  of the regulator for a given 

inductor L > Lmin and load current IL can be represented by:  

 
Ip = (

Vin − Vo

L
) Ton =

2 ILmax Lmin

L
    

(4.1) 

 

 
fs =

(Vin − Vo) Vo L

2 Vin Lmin
2  ILmax

2  IL             
(4.2) 

 

Eqs. (4.1) and (4.2) are plotted in Fig. 1c versus load current up to 40mA, and with 

4.7µH and 10µH inductors, which are the desired minimum and maximum inductors 

respectively. The equations are valid only for loads below (Lmin L⁄ )ILmax (DCM operation), 

and show that Ip  is constant, while fs  scales linearly with load as desired for reducing 

switching losses at light loads. For loads over (Lmin L⁄ )ILmax, the inductor moves into CCM, 

and for output capacitors with small estimated series resistance Resr (ceramic capacitors),  
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Figure 4.1. Conventional controllers operating in DCM: (a) ACOT, and (b) Voltage-mode 

hysteretic. (c) Simulated inductor peak current and switching frequency versus load for the 

AMOT controller alone, hysteretic controller alone, and the transition between them in the 

proposed Hysteretic-Assisted AMOT controller. 
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instability and regulation failure occur due to the phase shift between the output voltage and 

the inductor current [15], and loop compensation with additional passives must be used to 

ensure proper functionality in CCM. 

To address the above limitation, we propose assisting the AMOT controller with a 

hysteretic controller towards the higher end of the load range to prevent the inductor from 

moving into CCM, which requires a close study of hysteretic operation in DCM. A 

conventional voltage-mode hysteretic controller, shown in Fig. 4.1b, relies on a hysteretic 

comparator to turn on the high-side power FET once the output voltage drops below the 
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lower bound of the hysteretic band, and turns it off once the output voltage increases above 

the higher bound of the hysteretic band. Assuming DCM operation, the inductor peak current 

is determined by solving the quadratic equation: 

 
(

1 

2 ∝1 C
) Ip

2 − (
IL

∝1 C
− Resr) Ip − VHe = 0 

(4.3) 

 

where VHe is the effective hysteretic band of the comparator, ∝1= (Vin − Vo) L⁄   is 

the charging rate of the inductor, and C is the output capacitor. VHe can be further represented 

as: 

 
VHe = VHex + (

∝1

2c
) td

2 + (
IL

2c
) td 

(4.4) 

 

where VHex is the explicit portion of the hysteretic band, while the rest is the implicit 

portion due to the comparator’s delay td. Solving Eq. (4.3),  Ip can be represented as: 
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Ip = (IL −∝1 ResrC) [1 − √1 +
2 ∝1 C VHe

(IL −∝1 ResrC)2
]      for IL ≤∝1 ResrC  

 

 

Ip = (IL −∝1 ResrC) [1 + √1 +
2 ∝1 C VHe

(IL −∝1 ResrC)2
]      for IL >∝1 ResrC  

               

(4.5) 

 

while the switching frequency can be represented by: 

 
fs =

2 ∝1

(1 +
∝1

∝2
)  Ip

2
  IL  

(4.6) 

 

where ∝2= Vo L⁄   is the discharging rate of the inductor. To guarantee DCM 

operation, the inductor peak current must be at least twice the maximum load current under 

all conditions. By making Ip = 2ILmax and IL = ILmax in Eq. (4.3), the effective hysteretic 

band of the comparator must meet the following condition in order to maintain DCM 

operation: 

 VHe ≥ 2 ILmax Resr (4.7) 
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If VHe is less than the limit in Eq. (4.7), the inductor moves into CCM for loads above 

VHe 2Resr⁄ , and instability and regulation failure occur for small values of Resr. Similar to 

the AMOT case, the inductor peak current and the switching frequency with the hysteretic 

controller alone are plotted versus load in Fig. 4.1c with the same inductor values as the 

AMOT case. 

By inspecting the plot and Eq. (4.5), it can be seen that the inductor peak current has a 

quasi-linear relationship with the load, where the inductor peak current is always very close 

to twice the load current, i.e. border of DCM and CCM. In fact, this relation becomes exact 

in the ideal case with Resr = 0  and VHe = 0 . This allows the controller to ensure DCM 

operation for any load with minimal excessive inductor peak current irrespective of the wide 

range of input, output, and inductor values. However, according to Eq. (4.6), this quasi-linear 

relation between the inductor peak current and the load yields a switching frequency that 

increases as the load drops, before it starts to decrease again towards the very low end of the 

load range when the term (
2∝1C VH

(IL−∝1ResrC)2
) in Eq. (4.5) becomes larger than unity and the 

relation between the inductor peak current and the load slightly deviates from its linear form. 

This behavior results in excessively high switching frequencies in the lower end of the load 

range as shown in Fig. 4.1c, leading to much degraded efficiency. Moreover, at the lower end 

of the load range, the inductor peak current becomes more sensitive to the input, output, and 

inductor values, which is highly undesirable if the a wide range of these parameters must be 

supported. 

Comparing the behavior of the AMOT and voltage-mode hysteretic controllers, it can 

be seen that the hysteretic controller is superior to AMOT towards the high end of the load 
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range as it maintains DCM operation with no loop compensation while producing minimal 

excessive inductor peak current. On the other hand, the AMOT controller is superior towards 

the lower end of the load range as it results in much lower switching frequencies, and thus 

lower switching losses, which dominate at light loads. In order to leverage the best of both 

controllers, we propose implementing a scheme that transitions automatically between the 

two control modes at the load point at which the switching frequency produced by both 

modes is identical as shown by the arrows in Fig. 4.1c. This point serves as an ideal transition 

point since below it, the hysteretic controller results in higher switching frequency than 

AMOT, while slightly above it, the AMOT controller moves into CCM when an inductor 

close the maximum is used. 

To realize the proposed scheme with automatic transition and without the overhead of 

building two separate controllers, the Hysteretic-Assisted AMOT (HA-AMOT) controller in 

Fig. 4.2a is proposed. In this implementation, a single-threshold control comparator (explicit 

hysteresis VHex = 0) is used along with an adaptive AMOT pulse generator with a pulse 

width adapted to the input and output voltages to produce the constant inductor peak current 

Ip in Eq. (4.1). To understand the operation of the controller, we will initially assume zero 

Resr and comparator delay td for simplicity, and start at loads less than (Ip 2⁄ ). In this case, 

as shown in Fig. 4.2b, once the output voltage drops below Vref , the control comparator 

toggles its state and activates the pulse generator. Since the inductor current starts from zero 

(DCM), the output voltage drops further before it starts to recover, and due to charge 

conservation, it recovers back to Vref  when the inductor current reaches exactly twice the 

load current. At this point, the control comparator toggles its state one more time before the 
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inductor current reaches Ip, and the observation logic concludes that the inductor has enough 

current to sustain the load in DCM, and allows the on-time pulse unaltered. Thus, the 

operation of the controller is essentially identical to the AMOT controller described by Eq. 

(4.1) and (4.2). As the load current increases, the operation remains the same until the load 

exceeds (Ip 2⁄ ). In this case, as shown in Fig. 4.2b, the comparator doesn’t toggle its state by 

the end of the on-time pulse, implying that Ip is insufficient to sustain the load in DCM, and 

the inductor will have to move into CCM. To prevent this scenario, the observation logic 

intervenes and extends the on-time pulse (by simply ignoring it) until the comparator toggles 

its state, then immediately terminates the pulse. Thus, for loads above (Ip 2⁄ ) , the 

observation logic’s action effectively transforms the AMOT control to hysteretic since it 

ensures that the on-time pulse width is extended such that the inductor peak current is always 

equal to twice the load current (border of DCM and CCM). For non-zero Resr and td, the 

operation is the same, except that the actual load point ILtrans at which transition from the 

AMOT mode to the hysteretic mode happens drops below (Ip 2⁄ ) and becomes: 

 

 

ILtrans =
Ip

2
[
1 + (

Vin − Vo

ILmax Lmin
) ResrC

 1 + (
Vin − Vo

2 ILmax Lmin
) td

]   

(4.8) 
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For loads above this point, the controller operates in hysteretic mode following Eqs. 

(4.4)-(4.6), except that VHex = 0. Thus, the effective hysteretic band VHe  becomes only a 

function of td, which must be designed to ensure that VHe satisfies Eq. (4.7). 

 

Figure 4.2. (a) Block diagram of the proposed HA-AMCOT controller, (b) Important 

signals showing the operation of the controller when the load current is less than, or higher 

than half the constant inductor peak current, and (c) A complete flow chart descriping the 

operation. 

 

 

s showing the operation of the controller when the load current is less than, or higher than 

half the constant inductor peak current, and (c) A complete flow chart descriping the 

operation.  
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The above description of the operation of the proposed controller suggests that DCM 

operation is always guaranteed in steady-state. However, if the load changes during the off-

time from a value less than ILtrans to a value higher than ILtrans, the inductor may move into 

CCM for at least one switching cycle, which can lead to instability. To prevent this scenario, 

the inductor Zero-Current-Detector (ZCD), which is required anyway in DCM for turning off 

the low-side switch during idle-time, is used by the main control logic to disallow the 

observation logic from ever triggering a new on-time pulse unless the inductor current is 

zero. The detector is implemented using a comparator that continuously observes the 

switching node voltage during the off time. Moreover, in short-circuit or overload conditions, 

the on-time pulse must be prevented from being extended to where the inductor current 

reaches damaging levels. Thus, an overload detector is implemented by sensing the high-side 

FET current as the on-time being extended, and if the inductor current reaches Ilimit, the 

regulator is reset and a fault condition is indicated. A complete flow chart describing the 

operation of the proposed controller is shown in Fig. 4.2c. 

In addition to the advantages described earlier of transitioning between AMOT and 

hysteretic modes as a function of load, the specific implementation in Fig. 4.2 offers 

additional notable advantages. First, it eliminates the need for two separate controllers since 

the same circuits are used interchangeably in the AMOT and hysteretic modes. Second, all 

the circuit blocks in Fig. 4.2a are anyway necessary blocks in conventional ACOT controllers 

operating in DCM. Minimizing the on-time in order to implement the AMOT mode, and the 

observation logic that transforms it to a hysteretic mode for loads above ILtrans constitute 

insignificant overhead in terms of silicon area or quiescent current beyond a standard ACOT 

controller. Third, despite the fact that the transition between the two control modes is a 
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function of the inductor value and the input and output voltages as shown by Eq. (4.8), this 

transition is accomplished automatically in the proposed implementation through observing 

the state of the control comparator at the end of the on-time pulse. As a result, fully adaptive 

operation is achieved for a wide range of input, output, and inductor values with no need for 

calibration or inductor current sensing. 

 

4.3 Power-Gating and Circuit Implementation  

 

 

In analog circuits, power-gating is applied to reduce power consumption if the circuit 

is unused or if high performance is not needed by disconnecting or reducing the bias current 

of the circuit [6, 7]. This can be an effective method for reducing the quiescent current of the 

converter in order to enhance efficiency at sub-1mA loads. Since at these loads the converter 

spends most of the switching cycle in the idle-time phase, it is critical to power-gate any 

Figure 4.3. Schematics of the proposed: (a) AMOT pulse generator with power-gating, and (b) 

Control comparator with power-gating.  
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unnecessary circuits during that phase. This includes the ZCD comparator, where its bias 

current is turned off during the idle-time phase as it is not needed except during the off-time 

phase. However, to ensure it is ready by the start of the off-time phase, its bias current is 

turned back on earlier at the start of the on-time phase, and a 20ns blanking time at the start 

of the off-time phase is applied to prevent any false triggering of the controller as the 

comparator wakes up. Power-gating is also applied to the AMOT pulse generator and the 

control comparator, where their bias current is reduced during the off-time and idle-time 

phases since high performance is not required from these circuits during these phases. 

In terms of circuit implementation, the most critical circuit blocks in the proposed 

controller are the adaptive AMOT pulse generator and the control comparator, which are 

discussed in details in the following two sub-sections. 

 

4.3.1 Adaptive Minimum Constant On-time Pulse Generator 

The AMOT pulse generator is shown in Fig. 4.3a, where a two-stage amplifier 

composed of a current-mirror OTA and a source-follower, is powered from the input of the 

regulator 𝑉𝑖𝑛, and is connected in a unity feedback configuration to reproduce the regulator’s 

output voltage 𝑉𝑜  at node “X”. As a result, the current flowing in the resistance 𝑅𝑎𝑚𝑐𝑜𝑡 

becomes proportional to the difference between the input and output voltages. This current is 

mirrored to charge a capacitor 𝐶𝑎𝑚𝑐𝑜𝑡  through the switch 𝑆21  once the pulse generator is 

triggered by the regulator’s control comparator to start the on-time phase. Once 𝑉𝑎𝑚𝑐𝑜𝑡 

crosses the reference 𝑉𝑟𝑒𝑓𝑎𝑚𝑐𝑜𝑡, the AMOT comparator is triggered, and 𝐶𝑎𝑚𝑐𝑜𝑡 is discharged 

through deactivating the switch 𝑆21  and activating the switch 𝑆22 . Moreover, the AMOT 
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comparator is power-gated through the switch 𝑆𝑝𝑔 in order to reduce the quiescent current. It 

is worth noting that the transistor 𝑀𝑠𝑓  is implemented using a low-voltage, low-threshold 

PMOS device with its bulk connected to the source to ensure that node “X” tracks the 

regulator’s output down to 0.9V with no headroom issues. With this implementation, the on-

time 𝑇𝑜𝑛 can be rewritten as: 

 
𝑇𝑜𝑛 =

𝑉𝑟𝑒𝑓𝑎𝑚𝑜𝑡 𝑅𝑎𝑚𝑜𝑡  𝐶𝑎𝑚𝑜𝑡

𝑉𝑖𝑛 − 𝑉𝑜

 
(4.9) 

 

Therefore, meeting the inductor peak current value set by Eq. (4.1) can be ensured 

through the following equation, which must be met under all process and temperature 

corners: 

 𝑉𝑟𝑒𝑓𝑎𝑚𝑜𝑡  𝑅𝑎𝑚𝑜𝑡  𝐶𝑎𝑚𝑜𝑡 ≥ 2 𝐼𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛  (4.10) 

 

Compared to other ACOT pulse generator implementations, such as in [13], this 

circuit offers two important advantages. First, it generates a pulse that is inversely 

proportional to the difference between the input and output voltages down to very low output 

voltage levels. Second, the accuracy of the pulse width can be greatly improved by using a 

high-speed AMOT comparator, but without significant average quiescent current overhead 

due to the employed power-gating. A shortcoming that is worth noting, however, is that due 

to process and temperature variations in 𝑅𝑎𝑚𝑐𝑜𝑡 , the inductor peak current may exceed its 

desired value in Eq. (4.1). Nonetheless, since the microcontroller has a readily available 
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trimmed bandgap, the same trimming code is used to minimize the variations in 𝑅𝑎𝑚𝑐𝑜𝑡  in 

order to circumvent this shortcoming. 

4.3.2 Control Comparator 

The proposed control comparator is shown in Fig. 4.3b [16], where it has a resistor -

loaded, low-gain pre-amplifier stage (to maximize speed), followed by a conventional 

differential to single-ended stage (to provide high gain). The pre-amplifier is composed of a 

static GM stage (i.e. always enabled) and a power-gated GM stage that is enabled during the 

on-time phase to maximize speed, and disabled during the off-time and idle-time phases to 

reduce the average quiescent current. This dynamic power-gating causes significant charge 

injection at the gates of the input differential pair, which produces glitches on the reference 

voltage 𝑉𝑟𝑒𝑓. This is problematic since the reference voltage is shared by many other circuits 

in the microcontroller [17]. To mitigate this issue, a minimum size isolation switch 𝑆𝑖𝑠 and a 

holding capacitor 𝐶ℎ  are introduced.  At the end of the on-time phase, 𝑆𝑖𝑠  is immediately 

turned off, while power-gating is enabled by turning off the switches 𝑆11 − 𝑆13 after a slight 

delay 𝑇𝑛𝑣𝑙  (2~5ns). Thus, the reference voltage is isolated from the input differential pair 

when power-gating is enabled, and any charge injection is stored on 𝐶ℎ. At the start of the 

on-time phase, power-gating is immediately disabled by turning on the switches 𝑆11 − 𝑆13, 

while 𝑆𝑖𝑠 is turned back on after a delay of 𝑇𝑛𝑣𝑙. Thus, any previously-held charge on 𝐶ℎ is 

discharged by the opposite charge injection action, leading to minimal disturbance to the 

reference voltage. The delay time 𝑡𝑑 of the comparator is designed so that 𝑉𝐻𝑒 satisfies Eq. 

(4.7) to ensure DCM operation. To avoid false triggering due to noise and lack of explicit 

hysteresis, a blanking time is enforced by the Observation Logic to latch the comparator’s 

output for ~50ns after each triggering event. 
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4.4 Measurement Results 

 

The proposed HA-AMOT buck regulator is implemented in a 90nm standard CMOS 

process as part of a low-power low-cost microcontroller system. Fig. 4.4 shows the die photo 

of the part that contains the converter, where double bonding is utilized to minimize the 

resistive wire-bonding parasitics at the input, ground, and switching nodes of the converter. 

The total area of the converter is 0.1mm
2
, out of which 0.04 mm

2
 is occupied by the power 

switches and their drivers. Due to layout restrictions imposed by other circuits in the 

microcontroller, the converter had to be placed 100µm away from the I/O ring, which slightly 

degrades efficiency due to metal routing. The key performance metrics of the regulator and 

the range of input, output, and passive components it is characterized with are summarized in 

Table 4.1. To verify its ability to automatically adapt to a wide range of operating scenarios 

while maintaining DCM, the regulator is tested under multiple load currents with various 

combinations of input, output, and inductor values, including the extremes. All measurements 

are performed with the minimum output capacitance (2.2µF) since it produces the largest 

output voltage ripple. Otherwise, the output capacitor has little impact on the performance of 

the regulator. 

Fig. 4.5 shows the transient measurement results of the inductor current Iind, the 

output voltage Vo, and the switching node Vsw under different load currents and with the two 

extremes of the inductor range. As shown, DCM operation is preserved up to the maximum 

load current (40mA) for the two inductor extremes. In the case of 4.7µH inductor, it can be 

seen that the inductor peak current stays constant and the switching frequency increases as 
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the load current goes from 1mA to 10mA (Fig. 4.5a and 4.5b), which indicates AMOT 

operation mode. Moreover, it can be seen that the inductor peak current increases and the 

 

 

 

Figure 4.4. Die photo of the proposed HA-AMOT regulator showing double bonding at 

the input ground rails, as well as the switching node. 

Table 4.1. Performance Summary 
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switching frequency decreases as the load current goes from 20mA to 40mA (Fig. 4.5c and 

4.5d), which is consistent with the hysteretic operation mode. The same behavior is observed 

with a 10µH inductor (Fig. 4.5e through 4.5h), except that the hysteretic mode takes over at 

an earlier point in the load current range (less than 10mA). It is worth noting that in the 

hysteretic mode, the inductor operates slightly deeper in DCM rather than at the border of 

DCM and CCM. This is because as shown in Eq. 8, for non-zero Resr and td, the transition 

between the AMOT and hysteretic modes occurs slightly earlier than the ideal case. To gain 

better visibility into the operation of the regulator, Fig. 4.6 shows the measured steady-state 

inductor peak current Ip  versus the load with 4.7µH and 10µH inductors and various 

combinations of input and output voltages. As shown, at very light loads, the inductor peak 

current is constant, which is consistent with AMOT operation. Moreover, the largest inductor 

peak current in AMOT mode is very close to twice the maximum load current (80mA) 

required for DCM. Otherwise, it is always less than that. This is consistent with the AMOT 

scheme designed following Eq. (4.1), i.e. minimal excessive inductor peak current. 

Moreover, for a given inductor, the variation in the inductor peak current is limited to about 

±12.5% despite the wide range of input and output voltages, which is a result of the adaptive 

operation of the AMOT pulse generator. Furthermore, for a given inductor, the transition 

from the AMOT to hysteretic mode shifts to higher load points as the difference between the 

input and output voltages decreases, which is consistent with Eq. (4.8). This transition also 

drops to lower load points for higher inductor values as the starting inductor peak current is 

lower. It is worth noting that when the input is 1.8V and the output is 1.4V, the voltage drop 

across the high-side power switch (~200mV) becomes a significant portion of the overall 

voltage across the switch and the inductor (400mV). As a result, the inductor’s charging rate 
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drops below its ideal value, leading to lower than normal inductor peak current in this 

scenario. This behavior contributes to the ±12.5% spread in the inductor peak current 

observed in the AMOT mode at light loads. It also causes the inductor peak current in the 

hysteretic mode at higher loads to be a weaker function of the load. This impact is clearly 

seen in Fig. 4.6, particularly with low inductor values. Nonetheless, this behavior has no 

impact on the regulator’s operation as the hysteretic mode of the controller ensures enough 

inductor peak current to sustain the load in DCM.    

The power conversion efficiency of the proposed converter versus load current is 

measured under various operating scenarios as shown in Fig. 4.7. For a given inductor, the 

best efficiency is achieved at minimum input and maximum  output  because this scenario 

yields the lowest switching losses (due to lower input voltage), the lowest conduction losses 

(due to lower inductor peak current), and the highest output power for a given load. 

Moreover, for a given input and output voltage combination, a larger inductor yields worse 

efficiency at sub-1mA loads as it results in lower inductor peak current, and thus higher 

switching frequencies. Since switching losses dominate at sub-1mA loads, higher switching 

frequencies yield lower efficiency. This behavior is reversed at higher loads since conduction 

losses dominate, and therefore, a larger inductor yields better efficiency due to the lower 

inductor peak current. 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

 

(h) 

Figure 4.5. Transient measurements showing inductor current, output voltage, and switching 

node of the proposed regulator with 3.3V input voltage, 1.2V output voltage, and various 

load currents. (a), (b), (c), and (d) show the results with a 4.7µH inductor, while (e), (f), (g), 

and (h) show the results with a 10µH inductor. 
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Figure 4.6. Measured inductor peak current versus load for various scenarios showing the 

transition points between the AMOT and hysteretic modes. 

Figure 4.7. The measured efficiency versus load current of the proposed HA-AMOT 

regulator for various operating scenarios. 
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4.8. Comparison between the measured without power-gating, with hysteretic mode 

forced across the entire load range (pure hysteretic operation), and with the on-time 

modified to operate as a conventional ACOT controller in DCM. 

Figure 4.9. The regulator’s response to a 1mA to 40mA load step with 3.3V input, 

1.2V output, and 4.7µH inductor: (a) with a 20µs time scale, and (b) with a 4µs time 

scale and more frequent load efficiency using the HA-AMOT control with and Figure 

(a) (b) 
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To further demonstrate the advantages of the proposed HA-AMOT scheme, test 

modes were built into the regulator to force it to operate in pure hysteretic mode for the entire 

load range, or to increase the on-time to convert the proposed controller to a conventional 

ACOT controller, where as defined in section 4.2, the inductor peak current is large enough to 

ensure DCM for the entire load range when the maximum inductor is used. Additionally, to 

highlight the effectiveness of the power-gating strategy described in section 4.3, a test mode 

is designed to disable power-gating within the HA-AMOT controller. Fig. 8 shows a 

comparison between the measured efficiency versus load current for the aforementioned test 

modes. As shown, the proposed HA-AMOT scheme offers about 5% better efficiency across 

all loads compared to the conventional ACOT mode. It also offers over 12.5% better 

efficiency at 200µA load compared to the hysteretic mode alone. These results demonstrate 

that combining the AMOT and hysteretic modes as proposed, and automatically transitioning 

between them as a function of load indeed maintains DCM for a wide range of operating 

scenarios while yielding better efficiency than using conventional ACOT or hysteretic 

schemes alone. Moreover, the implemented power-gating results in efficiency improvement 

across all loads in general, but in particular, it results in over 22% improvement at 200µA 

load. This is due to a 75% reduction in the quiescent current when power-gating is enabled as 

reported in Table 4.1. The dynamic response of the regulator has also been tested for a 1mA-

40mA-1mA load step. As shown in Fig. 4.9, the switching frequency increases for the higher 

load as expected from PFM operation, while DCM is preserved during transition. Moreover, 

the inductor peak current increases as expected when the controller moves from the AMOT 

mode at 1mA to the hysteretic mode at 40mA. 
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Various key performance aspects of the proposed regulator are compared to other 

relevant published work in Table 4.2. For objective comparison, efficiency is compared with 

the closest possible input, output, and inductor reported in the references in the 0-40mA load 

range. The exact operating conditions are reported in the table for each reference. Since some 

of the other references are targeting much heavier loads than 40mA, comparison of efficiency 

and quiescent current is done with the performance reported using the light-load controllers 

in these references. It is important to note that information about the physical footprint of the 

inductor is necessary for a fair comparison between different regulators as a smaller footprint 

results in larger series resistance (DCR) and lower efficiency. This information is reported 

only in [6], and in comparison, the proposed regulator offers comparable efficiency with a 

much smaller inductor footprint. Other notable features of the proposed regulator include the 

wide range of input voltage and passive components values compared to other work. It also 

offers a small die area, which is attributed to two factors. First, the AMOT and hysteretic 

modes utilize the same circuit blocks. Second, operating close to the DCM-CCM border 

towards the high end of the load range enables optimizing efficiency with the smallest 

possible power switches. 
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4.5 Conclusion 

 

A Hysteretic-Assisted Adaptive Constant On-Time control scheme for buck 

regulators in low-power microcontrollers has been presented. The proposed scheme forces 

DCM-only operation for the entire load range, and thus stability is guaranteed with no loop 

compensation. It automatically adapts itself to a wide range of operating scenarios such that 

DCM operation is always maintained with the minimum possible inductor peak current for a 

given load. As a result, losses are minimized and high efficiency can be achieved for a wide 

range of input and output voltages and passive components. A power-gating scheme is 

implemented in all the analog blocks of the controller to reduce the quiescent current by 

75%, which results in 22% efficiency improvement at 200µA load. The proposed scheme 

yields better efficiency across the entire load range than conventional ACOT or hysteretic 

Table 4.2 Performance Comparison with other Published Work 
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control alone. The regulator allows low-power microcontrollers to handle a wider range of 

potential applications through supporting various powering options and passive component 

selections. 
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CHAPTER V. CONCLUSION 

 

In this thesis, we have discussed several topics on power conversion schemes for low 

power application in nanometer CMOS technology, from theory to circuit’s implementations. 

In chapter 2, we provide comprehensive analysis and modeling of switching and 

conduction losses in low-power synchronous buck regulators in both CCM and DCM modes 

of operation including the case with non-rail gate control of the power FETs. 

In chapter 3, a fully-integrated buck regulator with on-chip passives in 65nm standard 

CMOS technology is presented. The proposed regulator switches at 588MHz and uses a 

20nH on-chip inductor and a 300pF on-chip output capacitor. It operates from 1.8V input and 

produces an output in the range between 0.8V to 1.2V with maximum load current of 30mA. 

In chapter 4, we present a 40mA buck regulator operating in the inherently stable 

Discontinuous Conduction Mode (DCM) for the entire load range. A Pulse Frequency 

Modulation (PFM) control scheme is implemented using a proposed Hysteretic-Assisted 

Adaptive Minimum On-Time (HA-AMOT) controller to automatically adapt the regulator to 

a wide range of operating scenarios in terms of input, output, and passive component values 

while ensuring compensation-less DCM operation with minimized inductor peak current. 

      In this chapter, we will present some new ideas on fully integrated buck regulator 

for improved performance and lower cost.  
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5.1 Fully Integrated DC-DC Buck Converter in DCM/PFM Scenario 

 

In chapter 3, we have discussed and proposed a fully integrated DC-DC buck 

converter operating in CCM scenario with on-chip passives to replace linear regulators in 

nanometer mixed-signal SoC so as to improve the power/thermal efficiency of the whole 

chip. However, several conditions have to be met so as to achieve the purpose of the work. 

First of all, a high frequency clock(~500 MHz) is required so as to support the voltage mode, 

PWM operation. Such a requirement may increase the total overhead of the SoC since not all 

the SoCs can provide such a clock at this particular frequency without any overhead. Second, 

a relative high quality on-chip inductor is needed so as to maintain the power efficiency of 

the regulator. To implement such an on-chip inductor, we need at least one thick metal layer 

or several metal layers to stack, as well as some doping limitation on the substrate to reduce 

the eddy current effect. Those requirements may not be applicable to all the process. Lastly, 

the buck converter operating in CCM scenario can not achieve good power efficiency at light 

load condition due to excessive switching losses at sub 5mA. Moreover, during the phase 

when NMOS powerFET is on, the inductor current will flow back into the powerFET once 

the load is less than 20mA, which also degrade the power efficiency of the converter. In this 

chapter, we will briefly discuss the feasibility of building a fully integrated DC-DC buck 

converter in DCM scenario to mitigate the issues discussed above. 

Based on the discussion above showing the potential issues with the proposed fully 

integrated buck regulator operating in CCM scenario, having the buck converter operating in 

DCM/PFM scenario has several advantages. 
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First of all, the DCM/PFM buck regulator is famous for its light load efficiency 

improvement over CCM/PWM buck regulator. The reason is the DCM/PFM buck regulator 

is operating with fixed on-time while the switching frequency is scalable with respect to the 

load. In such case, the switching frequency can be tremendously reduced once the load drops 

below sub 1mA. Thus, the switching losses and conductional losses of the converter can be 

re-balanced so as to achieve the optimum power efficiency across a much wider range in the 

proposed specification. 

Second, the DCM/PFM buck regulator does not require a clock for its operation. The 

only timing related block is a timer for the on-time pulse generator, which can be 

implemented with a R-C timer or I-C timer. Although there is published work on DC-DC 

buck regulator with internal clock generator for CCM/PWM scenario [1], such a clock 

generator requires at least two comparators which is very difficult to implement(power 

consumption is too high) if the frequency of the regulator is higher than 100 MHz. Thus, 

having a buck regulator working around 100 MHz without clock is the best choice for both 

power efficiency and silicon area overhead. 

Finally, the size/value of the on-chip inductor can be reduced with DCM/PFM buck 

regulator [2]. Based on the limitation of the process of the proposed buck regulator discussed 

in chapter 3, the DCR of the on-chip inductor is more than 7 Ohm, which dominates the 

power loss of the whole regulator. The best way to reduce the DCR of the on-chip inductor is 

to reduce the value/size of the inductor since the DCR is mainly due to the winding of the 

inductor. By operating the buck regulator in DCM/PFM scenario, both area and inductor 

related power loss can be reduced, which is a big factor why DCM/PFM buck regulator is 

advantageous for such an application. 
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However, there are several technique difficulties to implement a fully integrated 

DCM/PFM buck regulator. First of all, the DCM/PFM buck regulator relies on a much bigger 

output capacitor to reduce the voltage ripple comparing to a CCM/PWM buck regulator in 

similar scenario. Thus, it may require the process to have high density poly-nwell capacitor 

so as to mitigate the area overhead. Second, DCM/PFM buck regulator requires a zero 

current detector(ZCD) to turn off low-side PowerFET when inductor current drops to zero. 

For a high frequency DCM/PFM buck regulator, such ZCD needs to have a delay that is less 

than a fraction of nano second since the frequency of operation is beyond 100 MHz. Such a 

fast ZCD is very difficult to implement with limited power budget. Finally, DCM/PFM buck 

regulator is much more noisy than its CCM/PWM counterpart due to EMI(the switching 

node oscillates during the idle time). The noise may get coupled to other blocks inside the 

SoC, causing performance degradation or even functionality failure of other blocks. 

In conclusion, a fully integrated DCM/PFM buck regulator is very attractive due to 

several features discussed above, which have the potential to further improve the power 

efficiency of the system while reducing the overhead. However, there are several technical 

difficulties in the meanwhile which need special attention as well as technical solutions.    
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